Discrete and intersample analysis of sampled-data systems with non-uniform sampling

L. Hetel (1), A. Kruszewski (1), W. Perruquetti (1,2), J.P. Richard (1,2)

(1) LAGIS, UMR CNRS 8146, Ecole Centrale de Lille, BP48, 59651 Villeneuve d’Ascq Cedex, France
(2) INRIA, Projet ALIEN, France

GT CPNL - 13/01 2011
Outline

Introduction and Problem Formulation

Discrete-time approach
 Convex embedding
 Lyapunov functions
 Numerical example

Continuous-time approach
 Quadratic Lyapunov functions
 Quasi-Quadratic Lyapunov functions
 Lyapunov - Razumikhin functions
 Numerical example

Conclusion
Motivating problems : Digital control

Classical control loop

Ideal Hypothesis :
- Sampling and actuation are periodic and synchronous
Motivating problems: Digital control

Classical control loop

Real-time problem: the system is affected by timing problems
 ▶ sampling jitter (sensor, multitasking processors, packet dropouts in communication channels)
 ▶ unknown time varying delays (not addressed here)

(Wittenmark, Nilsson, Torngren, 1995)
Consider the system

\[\dot{x}(t) = Ax(t) + Bu(t), \ \forall t \in \mathbb{R}^+ \]

with a sampled-data control:

\[u(t) = Kx(t_k), \ \forall t \in [t_k, t_{k+1}) \]

Problem: Is the system stable under sampling variations?
Sampling jitter example (Zhang, 2001)

\[\dot{x} = Ax + Bu_k, \quad u_k = Kx_k, \quad h_k \in \{T_1, T_2\} \]

\[A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0.6 \end{bmatrix}, \quad K = -\begin{bmatrix} 1 & 6 \end{bmatrix} \]
Sampling jitter example (Zhang, 2001) ⇒ instability

\[\dot{x} = Ax + Bu_k, \quad u_k = Kx_k, \quad h_k \in \{ T_1, T_2 \} \]

\[A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0.6 \end{bmatrix}, \quad K = -[1 \quad 6] \]

Open problem: provide tools for robust stability and performance analysis!
Discrete-time model

\[\dot{x} = Ax + Bu_k, \quad u_k = Kx_k, \quad h_k \in [h_{\min}, h_{\max}] \]

\[x(t_{k+1}) = e^{(t_{k+1}-t_k)A} x(t_k) + \int_{0}^{(t_{k+1}-t_k)} e^{sA} ds Bu(t_{k+1}) \]

\[\Rightarrow \quad x_{k+1} = \Lambda(h_k) x(t_k) \]
Discrete-time model: difference inclusion

Continuous-time model

\[\dot{x} = Ax + Bu_k, \quad u_k = Kx_k, \quad h_k \in [h_{\text{min}}, h_{\text{max}}] \]

Equivalent discrete-time model

\[x^+ \in \mathcal{H}(x), \quad \mathcal{H}(x) = \{ y : y = \Lambda(h)x, \quad h \in [h_{\text{min}}, h_{\text{max}}] \} \]

with

\[\Lambda(h) = e^{hA} + \int_0^h e^{sA} dsBK \]

(Continuous-time system stable iff Difference inclusion is stable)

Problems for stability analysis:

- How to deal with the uncertain matrices with exponential form?
 \[\int_0^h e^{sA} ds \]

- Which class of Lyapunov functions should we chose?
Exponential uncertainty

Integration operator

\[\Lambda(h) = e^{hA} + \int_0^h e^{sA} dsBK, \quad h \in [h_{\text{min}}, h_{\text{max}}] \]

For the case of quadratic Lyapunov functions \(V(x) = x^T P x \):

\[P > 0, \quad \Lambda^T(h) P \Lambda(h) - P < 0, \quad h \in [h_{\text{min}}, h_{\text{max}}] \]

Problem: infinite number of stability conditions
Exponential uncertainty

\[\Lambda(\rho) = e^{\rho A} + \int_0^\rho e^{sA} dsBK = I + \int_0^\rho e^{sA} ds \ (A + BK) \]

\[\Gamma(\rho) = \int_0^\rho e^{As} ds, \ h_{\text{min}} < \rho < h_{\text{max}} \]

curve in the space of \(\mathbb{R}^{n \times n} \) matrices
Consider a gridding on the space of parameters ρ

$$\forall \rho \in \{\rho_1, \rho_2, \ldots, \rho_N\} \subset [h_{\text{min}}, h_{\text{max}}].$$

- Finite number of conditions:
 $$P > 0, \quad \Lambda^T(\rho_i) P \Lambda(\rho_i) - P < 0,$$
 $$i = 1, \ldots, N$$

- Simple for illustration
- Approximative solution
Exponential uncertainty - Ellipsoidal embedding

\[\Gamma(\rho) = \Gamma_0 + \Delta \Gamma \]
\[\Delta \Gamma^T \Delta \Gamma < \epsilon I \]

- LMI solution can be obtained (Gahinet, IEEE TAC, 1994), (Fujioka, IEEE TAC, 2009)
- Exact solutions
- Conservatism due to over-approximation.
Exponential uncertainty - Polytopic Embedding

$$\exists \mu_i > 0, \ \forall i = 1, \ldots, N$$

s.t. $$\sum_{i=1}^{N} \mu_i = 1,$$

$$\Gamma(\rho) = \sum_{i=1}^{N} \mu_i A_i$$

(Olaru, Niculescu, IFAC World Congress 2007),
(Cloosterman, et. al, Trans. Autom. Contr. 2009),
Jordan normal form (Olaru, 2006), (Cloosterman, 2009)

For \(A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \)

\(\Gamma(\rho) = \begin{pmatrix} \alpha_1(\rho) & 0 \\ 0 & \alpha_2(\rho) \end{pmatrix} \)

with

\[\alpha_i(\rho) = \int_0^\rho e^{\lambda_i s} \, ds \]

vertex = max or min \(\alpha_i(\rho) \)

\(\lambda_1 = -1.5, \lambda_2 = 0.2 \)

\(\Gamma(\rho) = \sum_{j=0}^{2^n} \mu_j A_j \)
Polytopic embedding + gridding

For $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

$$\Gamma(\rho) = \begin{pmatrix} \alpha_1(\rho) & 0 \\ 0 & \alpha_2(\rho) \end{pmatrix}$$

with

$$\alpha_i(\rho) = \int_0^\rho e^{\lambda_i s} \, ds$$

vertex = max or min $\alpha_i(\rho)$

$$\lambda_1 = -1.5, \lambda_2 = 0.2$$

$$\Gamma(\rho) = \sum_{j=0}^{5 \times 2^n} \mu_j A_j$$
Tractable LMI conditions

\[
\sum_{j=1}^{N} \mu_j = 1, \mu_j > 0, \forall j = 1, \ldots, N,
\]

\[
\Gamma(\rho) = \sum_{i=1}^{N} \mu_j A_j,
\]

- \(\Lambda(\rho) = I + \Gamma(\rho)(A + BK) \in co\{I + A_j(A + BK), j = 1, \ldots, N\} \)

\[
P = P^T > 0
\]

\[
(I + A_j(A + BK))^T P (I + A_j(A + BK)) - P < 0, \forall j = 1, \ldots, N
\]

- Finite number of LMI stability conditions!
Remarks about polytopic embeddings

- A polytopic representation with less vertex may be obtained based on Taylor series approximation

 \[\text{(Hetel, Daafouz, Iung, TAC, 2006)} \]
- The conservatism due to the use of an embedding may be tunned according to the desired numerical complexity
- Allow to use more efficient Lyapunov functions.
Lyapunov functions

Equivalent Difference inclusion

\[x^+ \in \mathcal{H}(x), \quad \mathcal{H}(x) = \{ y : y = \Lambda(h)x, \ h \in T = [h_{\text{min}}, h_{\text{max}}] \} , \]

with

\[\Lambda(h) = e^{hA} + \int_0^h e^{sA} dsBK \]

General Remarks on Linear Difference Inclusions (LDI) :

- Quadratic Lyapunov Functions (QLF) \(V(x) = x^T P x \) are sufficient only for stability (not necessary)

- There are cases of LDI which are stable for which no QLF exists

(Dayawansa, Martin, IEEE TAC, 1999)
Lyapunov functions

Equivalent Difference inclusion

\[x^+ \in \mathcal{H}(x), \quad \mathcal{H}(x) = \{ y : y = \Lambda(h)x, \ h \in T = [h_{\text{min}}, h_{\text{max}}] \} , \]

General Remarks on Linear Difference Inclusions (LDI):

- Necessary and Sufficient stability conditions: the existence of Quasi-Quadratic Lyapunov functions

\[V(x) = x^T \mathcal{L}[x] x, \]

\[\mathcal{L}[x] = \mathcal{L}^T[x] = \mathcal{L}[ax], \quad \forall x \neq 0, \ a \in \mathbb{R}, \ a \neq 0 \]

s.t. the following relation is satisfied:

\[V(x) - \max_{h \in T} V(\Lambda(h)x) > 0. \]

(Molchanov and Pyatniskii, SCL 1989)
Quasi-quadratic Lyapunov functions

For \(V(x) = x^T L_{[x]} x \) and polytopic LDI

- BMI criteria based on composite quadratic approximations
 \[
 V_c(x) = \max_{i=1,\ldots,p} x^T L_i x, \quad L_i = L_i^T > 0.
 \]
 (Hu, Blanchini, Automatica, 2010)

- level set of composite function \(V_c(x) \) = intersection of ellipsoids

- no LMI existence criteria in the literature
Stability based on non-monotonous functions

(Megretzki, IEEE CDC 1994); (Krusezwski, Guerra, IEEE TAC 2008)

Classical approach
\[\forall x_k, \ V(x_{k+1}) - V(x_k) < 0 \]

New approach
\[\forall x_k, \ V(x_{k+\alpha}) - V(x_k) < 0 \]
Stability based on non-monotonous functions

Properties:

- $\alpha = 1$ - case of classical Lyapunov functions
- A LDI is stable iff there exist a finite $\alpha \in \mathbb{N}$ such as $V(x_{k+\alpha}) < V(x_k)$.
Stability based on non-monotonous functions

\[x^+ \in \mathcal{H}(x), \quad \mathcal{H}(x) = \{ y : y = \Lambda(h)x, \ h \in T = [h_{\text{min}}, h_{\text{max}}] \}, \]

Denote

\[\sigma = \{ h^i \}_{i=0}^{\alpha-1} \] sequence of \(\alpha \) sampling times and

\[\Phi_{\sigma}(\alpha) \] transition matrix associated to \(\sigma \):

\[
\Phi_{\sigma}(\alpha) = \begin{cases}
\Lambda(h^{\alpha-1}) \ldots \Lambda(h^1) \Lambda(h^0), & \alpha > 0 \\
I, & \alpha = 0.
\end{cases}
\]

with the function \(V(x) = x^T Px \).

Proposition: The equilibrium point \(x = 0 \) is asymptotically stable iff there exists a finite \(\alpha \in \mathbb{N}^+ \) s.t.

\[\Phi_{\sigma}^T(\alpha)P\Phi_{\sigma}(\alpha) - P < 0 \]

for all \(\alpha \) length sequences with values in \(T \).
Stability based on non-monotonous functions

\[\Lambda(h) \in coZ \text{ where } Z = \{Z_1, Z_2, \ldots, Z_N\} \]
Consider the set of products of \(\alpha \) matrices with values in \(Z \)

\[\mathcal{Y}_\alpha(Z) = \{Y : Y = \prod_{i=0}^{\alpha-1} Z_{\mu_i}, Z_{\mu_i} \in Z\} \cdot \]

Proposition. If there exist a positive integer \(\alpha \) and a matrix \(P = P^T \succ 0 \) that satisfy

\[P \succ Y^T PY, \quad \forall Y \in \mathcal{Y}_\alpha(Z), \]

then the equilibrium point \(x = 0 \) of the LDI is asymptotically stable.
Stability based on non-monotonous functions

- finite number of LMI (complexity to be tuned according to number of vertex N and the horizon of analysis α)
- is there any relation with Quasi-Quadratic Lyapunov functions?
- is there a constructive manner for obtaining a Quasi-Quadratic Lyapunov functions using P ?
Relation between the two approaches

Proposition. If there exist a positive integer α and a matrix $P = P^T \succ 0$ that satisfy

$$P \succ Y^T PY, \ \forall Y \in \mathcal{Y}_\alpha(\mathcal{Z}),$$

then there exists a composite quadratic Lyapunov function for the LDI,

$$V_c(x) = \max_{i=1,\ldots,M} x^T L_i x \text{ s.t. } V_c(x) > \max_{\theta \in \mathcal{T}} V_c(\Lambda(\theta)x)$$

where $L_i, \ i = 1, \ldots, M = N^{\alpha-1}$ are an enumeration of the elements in the set

$$\Omega = \left\{ Q^Z_\sigma(\alpha) = \sum_{j=1}^{\alpha-1} \left(\prod_{r=1}^{j} Z_{\mu_r} \right)^T P \left(\prod_{r=1}^{j} Z_{\mu_r} \right) + P, \ \sigma = \{\mu_r\}_{r=1}^{N-1} \in \{1, \ldots, N\}^\alpha \right\}.$$
Numerical examples

\[A_c = \begin{pmatrix} -0.5 & 0 \\ 0 & 3.5 \end{pmatrix}, \quad B_c = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{and} \quad K = \begin{pmatrix} 1.02 & -5.62 \end{pmatrix}. \]

- \(\Lambda(h) \) is Schur for any sampling interval \(h \in [0, 0.46] \).
- \(\Phi = (\Lambda(0.1))^6 \Lambda(0.43) \) is not Schur (exists a periodic unstable sequence).
- \(h_k \in \{0.1, h_{\text{max}}\} \)
- Exists a QLF for \(h_{\text{max}} = 0.36 \).
- with \(\alpha = 7, h_{\text{max}} = 0.41 \).
Numerical examples (Zhang, 2001)

\[A_c = \begin{pmatrix} 0 & 1 \\ 0 & -0.1 \end{pmatrix}, \quad B_c = \begin{pmatrix} 0 \\ 0.1 \end{pmatrix} \text{ and } K = (-3.75 \quad 11.5). \]

- \(\Lambda(h) \) is Schur for any sampling interval \(h \in [0, 0.172] \).
- \(h_k \in [0.01, h_{\text{max}}] \)
- for (Mirkin, 2007), (Fridman, 2004), (Hespanha, 2008) \(h_{\text{max}} < 1.36 \)
- with \(\alpha = 1 \), Taylor convex embedding, \(h_{\text{max}} = 0.17 \).
Numerical examples (Dayawansa, Martin, 1999)

Sampled-data version of

\[\dot{x} = A_\sigma x, \quad \sigma \in \{1, 2\} \]

\[A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & -8 \\ 1/8 & -1 \end{pmatrix} \]

No QLP can be found
Numerical examples (Dayawansa, Martin, 1999)

Sampled-data version of

\[
\dot{x} = A_\sigma x, \quad \sigma \in \{1, 2\}
\]

\[
A_1 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -1 & -8 \\ 1/8 & -1 \end{pmatrix}
\]

No QLP can be found

Positive Invariant Set based on Non-monotonous functions
Continuous-time approaches

Main Discrete-time problem: inter-sampling behavior

Evolution of a Lyapunov function $V(x) = x^T P x$

- Strictly decreasing at $t = t_k$
 (sufficient condition for stability analysis)
- Increasing in between the sampling times
 (false evaluation of control performance)
Existing work - Continuous-time: time delay approach

\[u(t) = Kx(t_k) = Kx(t - \tau) \text{ with } \tau = t - t_k, \ 0 < \tau_k < h_{max} \]
Existing work - Continuous-time

- Fridman et al, 2004 (input delay approach)
- Mirkin, 2007 (robust control equivalent)
- Hespanha, 2008 (impulsive delay diff. eq.)

Advantage:
- Directly extend to performance study (decay rate)
- Take into account the inter-sampling behavior

Inconvenient:
- Do not take into account the sawtooth form of the delay (conservatism)

Note: discrete-time approaches implicitly take into account this aspect via the integration operator
Goal

Provide a continuous-time method that takes into account the sawtooth form of the delay (advantage of discrete-time methods for conservatism reduction)
Case of quadratic Lyapunov functions

For \(\frac{dx(t)}{dt} = Ax(t) + BKx(t - \tau(t)), \quad \tau(t) := t - t_k, \quad \forall t \in [t_k, t_{k+1}) \)

and \(V(x) = x^T P x \)

- Derivative of Lyapunov function

\[
\frac{dV(x)}{dt} = 2x^T(t)P(Ax(t) + BKx(t - \tau)) .
\]

- Sawtooth evolution of delay can be introduced by using the integration operator \(\Lambda(\cdot) \) used for the discrete-time model:

\[
x(t) = \Lambda(t - t_k)x(t_k), \quad \forall t \in [t_k, t_{k+1})
\]
Case of quadratic Lyapunov functions

\[
\frac{dV(x)}{dt} = 2x^T(t)P(Ax(t) + BKx(t - \tau)) < -2\alpha V(x(t)).
\]

and

\[
x(t) = \Lambda(\tau)x(t_k), \forall \tau \in [0, h_{max}]
\]

Proposition: If \(\exists P = P^T \succ 0 \ G_1, G_2 \) s.t.

\[
\begin{pmatrix}
A^TP + PA + G_1 + G_1^T + \alpha P & PBK - G_1\Lambda(\tau) + G_2^T \\
K^TB^TP - \Lambda^T(\tau)G_1^T + G_2 & -G_2\Lambda(\tau) - \Lambda^T(\tau)G_2^T
\end{pmatrix} \prec 0,
\]

\(\forall \tau \in [0, h_{max}] \) then

\[
\frac{dV(x)}{dt} < -2\alpha V(x), \forall x \neq 0
\]

Remark: satisfied if \(\Lambda(\tau) \) is non-singular for all \(\tau \in [0, h_{max}] \)
Case of quadratic Lyapunov functions

Let $\Lambda(\tau) \in \text{co}\{A_j\}_{j=1}^N$, $\forall \tau \in [0, h_{\text{max}}]$.

Proposition: If $\exists P = P^T \succ 0$ G_1, G_2 s.t.

$$
\begin{bmatrix}
A^T P + PA + G_1 + G_1^T + \alpha P & PBK - G_1 A_j + G_2^T \\
K^T B^T P - A_j^T G_1^T + G_2 & -G_2 A_j - A_j^T G_2^T
\end{bmatrix} \prec 0,
\forall l = 1, \ldots, N.
$$

then

$$
\frac{dV(x)}{dt} < -2\alpha V(x), \forall x \neq 0
$$

Finite number of conditions may be obtained using the polytopic convex embedding for $\Lambda(\tau)$.
Non-singularity and Quasi-Quadratic Lyapunov functions

Remark: Existence of functions of the class $V_c(x)$ is necessary when Λ is non-singular

$$\frac{dx(t)}{dt} = Ax(t) + BKx(t_k), \forall t \in [t_k, t_{k+1}),$$

$$x(t_k) = \Lambda^{-1}(\tau)x(t)$$

$$\frac{dx}{dt} \in \mathcal{H}_c(x), \mathcal{H}_c(x) = \{(A + BK\Lambda^{-1}(\tau))x, \tau \in [0, h_{max}]\},$$

based on (Molchanov, Pyatniski, 1989), (Hu, Blanchini, Automatica 2010)
Extension: Quasi-Quadratic Lyapunov functions

\[
\frac{dx}{dt} \in G_c(x, t), \quad G_c(x, t) = \{(A + BK)x, Ax + BKx(t_k)\},
\]

For

\[
V_c(x) = \max_{i=1,...,M} x^T L_i x
\]

using

\[
\max_{y(t) \in G_c(x,t)} \nabla y(t) V_c(x(t)) = 2 \frac{dx^T}{dt} L_i x, \quad \text{for } x^T (L_j - L_i)x < 0
\]

we obtain the following set of conditions

\[
\begin{pmatrix}
A^TL_i + L_iA + \lambda L_i - \sum_{i \neq j} \beta_{ij} (L_j - L_i) + G_1 + G_1^T \\
K^TB^TL_i - \Lambda^T(\tau)G_1^T + G_2
\end{pmatrix}
\begin{pmatrix}
L_iBK - G_1\Lambda(\tau) + G_2^T \\
-G_2\Lambda(\tau) - \Lambda^T(\tau)G_2^T
\end{pmatrix} < 0,
\]

\[i, j = 1, \ldots, M, \forall \tau \in [0, h_{\max}].\]
Consider the quadratic function
\[V(x) = x^T P x, \quad P = P^T \succ 0. \]

Asymptotic stability conditions:
\[\dot{V}(x(t)) < 0 \text{ whenever } V(x(t_k)) < \alpha V(x(t)), \text{ with } \alpha > 1 \]

Matrix Inequalities conditions:
\[P = P^T \succ 0, \text{ a scalar } \epsilon > 0, \text{ and matrices } G_1, G_2 \in \mathbb{R}^{n \times n} \text{ s.t.} \]
\[\left(\begin{array}{cc}
A^T P + PA + \epsilon \alpha P + G_1 + G_1^T & PBK - G_1 \Lambda(\theta) + G_2^T \\
K^T B^T P - \Lambda^T(\theta) G_1^T + G_2 & -G_2 \Lambda(\theta) - \Lambda^T(\theta) G_2^T - \epsilon P
\end{array} \right) \prec 0. \]
\[\forall \theta \in [0, \theta_{\text{max}}] \]
Numerical example

Consider a continuous-time system described by:

\[
A = \begin{pmatrix} 1 & 15 \\ -15 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 \\
1 \end{pmatrix}.
\]

\(\lambda(A) = 1 \pm 15i\)

\(K\) - obtained by pole placement: \(\lambda(A + BK) = -1 \pm i\)

Stability analysis comparison:

\(\quad \) (Mirkin, TAC 2007): \(h \in [0, 0.014]\)

\(\quad \) (Naghshtabarzi, Hespanha, Teel, SCL 2008): \(h \in [0, 0.033]\)

\(\quad \) (Fujioka, Automatica 2009): \(h \in [0, 0.07]\)

\(\quad \) continuous-time + polytopic embedding: \(h \in [0, 0.09]\)

(singularity for 0.092)

\(\quad \) Lyapunov-Razumikhin + polytopic embedding: \(h \in [0, 0.14]\)

\(\quad \) discrete-time approach: \(h \in [0.01, 0.15]\)
Numerical example
Conclusion and Perspective

- Robustness to sampling jitter
- Provide robust methods for stability
- Show how to reduce the conservatism of stability analysis by taking into account the sawtooth form of the delay
- Perspective: control design