

M. DABO, N. LANGLOIS & H. CHAFOUK

GT Commande Prédictive Non Linéaire

ENSAM, Paris

13 janvier 2011

Outline

- Relative degree of nonlinear SISO systems
- Unconstrained NCGPC
- Case of relative degree equal to 1
 - □ Properties
 - □ Example
- Case of relative degree equal to 2
 - □ Properties
 - □ Example
- Conclusion and future work

1. Relative degree of NL systems

System considered:

 $\begin{cases} \dot{x}(t) = f(x(t)) + g(x(t))u(t) \\ y(t) = h(x(t)) \end{cases}$ (1)

Definition [Isidori 1995]:

The nonlinear SISO system (1) is said to have a relative degree ρ around x^0 if:

- (i) $L_g L_f^k h(x) = 0$ for all x in a neighbourhood of x^0 and all $k < \rho 1$,
- (ii) $L_g L_f^{\rho-1} h(x^0) \neq 0$

where
$$L_f h(x) = \sum_{i=1}^n \frac{\partial h}{\partial x_i}(x) f_i(x)$$

The relative degree ρ of (1) is said to be well-defined if (1) has the relative degree ρ at all points in an operating set [Chen 2001]

Criteria to minimize:

$$J = \frac{1}{2} \int_{0}^{T} \left[\hat{e}(t+\tau) \right]^2 d\tau \qquad \text{where} \qquad \hat{e}(t+\tau) = \hat{y}(t+\tau) - \hat{\omega}(t+\tau)$$

The control law can be derived under the assumptions [Chen 2003]:

- 1: zero dynamics exist and are asymptotically stable;
- 2: all states are accessible for measurements;
- 3: the system has a well-defined relative degree;
- 4: the output and the reference are sufficiently many times continuously differentiable with respect to time;

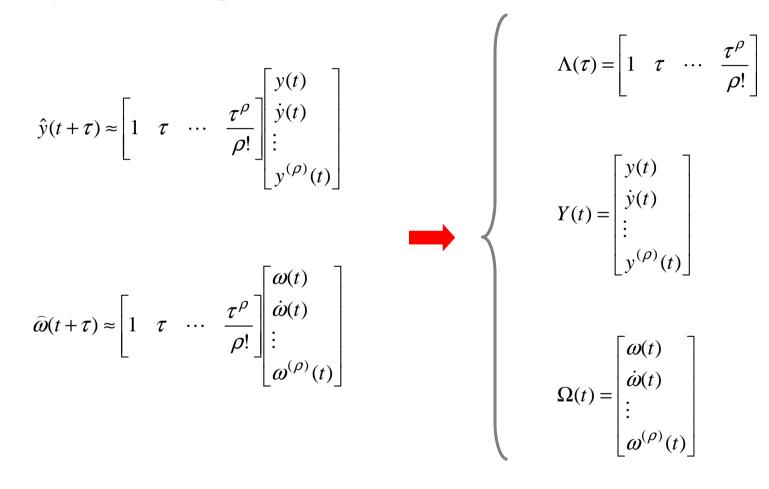
Taylor's series expansion:

$$\hat{y}(t+\tau) = \sum_{k=0}^{\rho} y^{(k)}(t) \frac{\tau^{k}}{k!} + R(\tau^{\rho}) \qquad \Longrightarrow \qquad \hat{y}(t+\tau) \approx \begin{bmatrix} 1 \quad \tau \quad \cdots \quad \frac{\tau^{\rho}}{\rho!} \end{bmatrix} \begin{bmatrix} y(t) \\ \dot{y}(t) \\ \vdots \\ y^{(\rho)}(t) \end{bmatrix}$$
where
$$\begin{cases} y(t) = h(x(t)) \\ \dot{y}(t) = L_{f}h(x(t)) \\ \vdots \\ y^{(\rho)}(t) = L_{f}^{\rho}h(x(t)) + L_{g}L_{f}^{\rho-1}h(x(t))u(x(t)) \end{cases}$$

In a similar way:

$$\widehat{\omega}(t+\tau) \approx \begin{bmatrix} 1 & \tau & \cdots & \frac{\tau^{\rho}}{\rho!} \end{bmatrix} \begin{bmatrix} \omega(t) \\ \dot{\omega}(t) \\ \vdots \\ \omega^{(\rho)}(t) \end{bmatrix}$$

Taylor's series expansion:



Criteria to minimize:

From $E(t) = Y(t) - \Omega(t)$ $J = \frac{1}{2} \int_{0}^{T} [\hat{e}(t+\tau)]^{2} d\tau$ Let the prediction matrix $\Pi(T,\rho) = \int_{0}^{T} \Lambda^{t}(\tau)\Lambda(\tau)d\tau$

where $\Pi(T, \rho)$ is of dimensions $(\rho + 1) \times (\rho + 1)$

Criteria minimization:

$$\left(\frac{\partial E(t)}{\partial u(t)}\right)^t \Pi(T,\rho)E(t) = 0$$

Criteria minimization:

$$E = \begin{bmatrix} y(t) - \omega(t) \\ \dot{y}(t) - \dot{\omega}(t) \\ \vdots \\ y^{(\rho)}(t) - \omega^{(\rho)}(t) \end{bmatrix} \longrightarrow E = \begin{bmatrix} h - \omega \\ L_f h - \dot{\omega} \\ \vdots \\ L_f^{\rho} h - \omega^{(\rho)} \end{bmatrix} + \begin{bmatrix} 0_{\rho \times 1} \\ u L_g L_f^{\rho-1} h \end{bmatrix} \longrightarrow \left(\frac{\partial E(t)}{\partial u(t)} \right)^t = \begin{bmatrix} 0_{1 \times \rho} & L_g L_f^{\rho-1} h(x(t)) \end{bmatrix}$$

Let $D(x(t)) = L_g L_f^{\rho-1} h(x(t))$
 $\left(\frac{\partial E(t)}{\partial u(t)} \right)^t \Pi(T, \rho) E(t) = 0 \longrightarrow \begin{bmatrix} 0_{1 \times \rho} & D \end{bmatrix} \Pi(T, \rho) \begin{bmatrix} h - \omega \\ \vdots \\ L_f^{\rho} h - \omega^{(\rho)} + Du \end{bmatrix} = 0$
 $D \Pi_s \begin{bmatrix} h - \omega \\ \vdots \\ L_f^{\rho} h - \omega^{(\rho)} + Du \end{bmatrix} = 0 \text{ where } \Pi_s \text{ (dimensions } 1 \times (\rho + 1)) \text{ is the last row of } \Pi(T, \rho)$

Criteria minimization:

$$D\Pi_{s} \begin{bmatrix} h - \omega \\ \vdots \\ L_{f}^{\rho} h - \omega^{(\rho)} + Du \end{bmatrix} = 0$$

The relative degree is supposed well-defined \square D cannot vanish for all $x \in X$: see (ii)

$$\square_{s} \begin{bmatrix} 0_{\rho \times 1} \\ Du \end{bmatrix} = \Pi_{s} \begin{bmatrix} \omega - h \\ \vdots \\ \omega^{(\rho)} - L_{f}^{\rho} h \end{bmatrix}$$

$$\square \square_{ss} Du = \Pi_s \begin{bmatrix} \omega - h \\ \vdots \\ \omega^{(\rho)} - L_f^{\rho} h \end{bmatrix}$$

where
$$\Pi_{ss}$$
 (dimensions 1×1) is the last element of vector Π_{s}

Resulting control law [Dabo 2009]:

Change of coordinates:

Resulting linear (and controllable) system:

$$\begin{cases} \dot{Z} = AZ \\ O = CZ \end{cases} \text{ with } A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -K_{\rho 0} & -K_{\rho 1} & -K_{\rho 2} & \cdots & -K_{\rho (\rho - 1)} \end{bmatrix} \text{ where } K_{\rho l} = \frac{\rho!}{l!} \frac{2\rho + 1}{(\rho + l + 1)T^{\rho - 1}}$$

Characteristic polynomial: $P_{\rho}(\lambda) = K_{\rho 0} + K_{\rho 1}\lambda + \dots + \lambda^{\rho} = 0$

3. Case of relative degree $\rho = 1$

Characteristic polynomial:

Corresponding system:

$$P_1(\lambda) = K_{10} + \lambda \qquad \qquad H_1(p) = \frac{G_1}{1 + \theta p}$$

Parameter identification:

$$\begin{cases} K_{10} = \frac{1}{\theta} \\ K_{11} = 1 \end{cases} \quad \text{and} \quad K_{10} = \frac{\rho!}{T^{\rho}} \frac{2\rho + 1}{\rho + 1} \qquad \longrightarrow \qquad \theta = 2T/3 \end{cases}$$

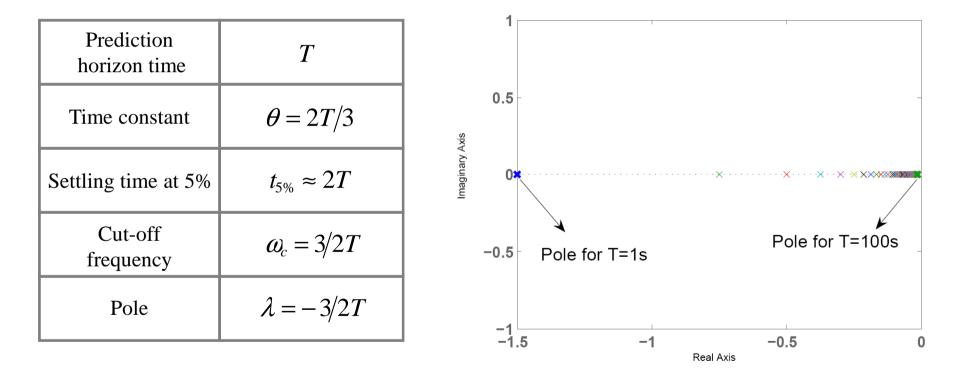
Theorem 1:

The application of NCGPC to SISO nonlinear system of dimension 1 equal to its relative degree, leads, in the right space of coordinates, to a linear 1st-order system with transfer function H₁ defined by a time constant θ and a static gain G₁ equal to the reference signal $\omega_1(t)$.

3. Case of relative degree $\rho = 1$: some properties

Characteristic parameters/times:

Closed-loop system stability:



3. Case of relative degree $\rho = 1$: example

System considered:

$$\begin{cases} \dot{x}(t) = 3x^2(t) + u(t) \\ y(t) = x(t) \end{cases}$$

System analysis:

system dimension = 1
 relative degree = 1
 No zero dynamics

Parameter values vs. T:

Prediction time T (s)	$K_1 = [K_{10} K_{11}]$	
1	[1.5 1]	
2	[0.75 1]	
3	[0.5 1]	
4	[0.375 1]	
5	[0.3 1]	

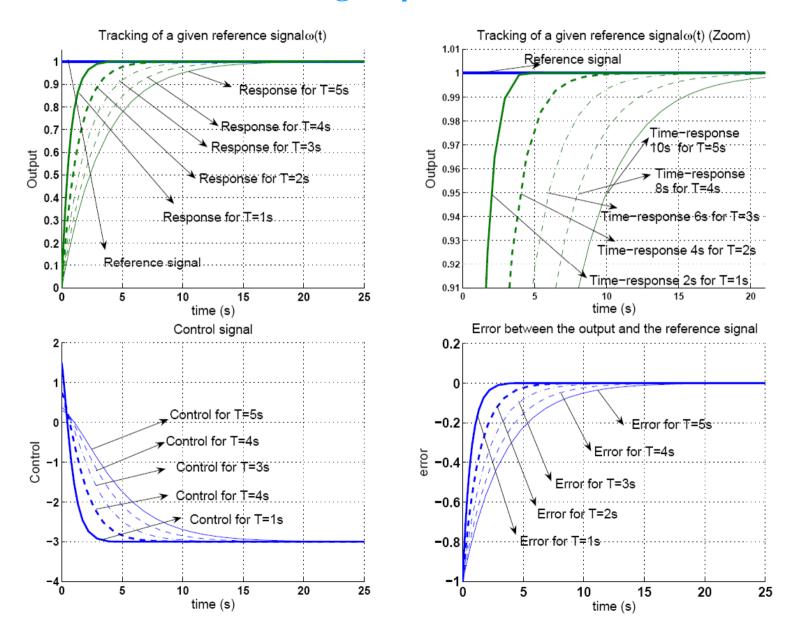
Desired output:

step

Control law:

$$u(x(t)) = \frac{-\sum_{l=0}^{1} K_{1l}(T,1) \left[L_f^l h(x(t)) - \omega^{(l)}(t) \right]}{L_g L_f^0 h(x(t))}$$

3. Case of relative degree $\rho = 1$: simulation results



4. Case of relative degree $\rho = 2$

Characteristic polynomial:

$P_2(\lambda) = K_{20} + K_{21}\lambda + \lambda^2$

$$H_2(p) = \frac{G_2}{p^2 + 2\xi\omega_n p + \omega_n^2}$$

Parameters identification:

Theorem 2:

The application of NCGPC to SISO nonlinear system of dimension 2 equal to its relative degree, leads, in the right space of coordinates, to a 2nd-order linear transfer function with a constant damping ratio $\xi \approx 0.685$ and a natural frequency $\omega_n \approx 1.83/T$.

4. Case of relative degree $\rho = 2$: some properties

Characteristic parameters/times:

Prediction horizon time	Т	1.5
Rise time	$t_r \approx 1.47T$	
Time-to-peak	$t_p \approx 2.34T$	0.5 NYA Lie D Poles for T=1s Poles for T=100s
Percent overshoot	<i>PO</i> ≈ 5.21	Poles for T=1s -0.5
Settling time at 5%	$t_{5\%} \approx 2.39T$	
Poles	$\lambda_{1,2} = -\frac{1}{T} (1.25 \pm 1.33j)$	-1.5 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Real Axis
Resonant frequency	$\omega_r \approx 0.46/T$	

0

4. Case of relative degree $\rho = 2$: example

System considered:

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = 2x_1^2(t) - 3u(t) \\ y(t) = x_1(t) \end{cases}$$

System analysis:

■ system dimension = 2

• relative degree = 2

No zero dynamics

Desired output:

step

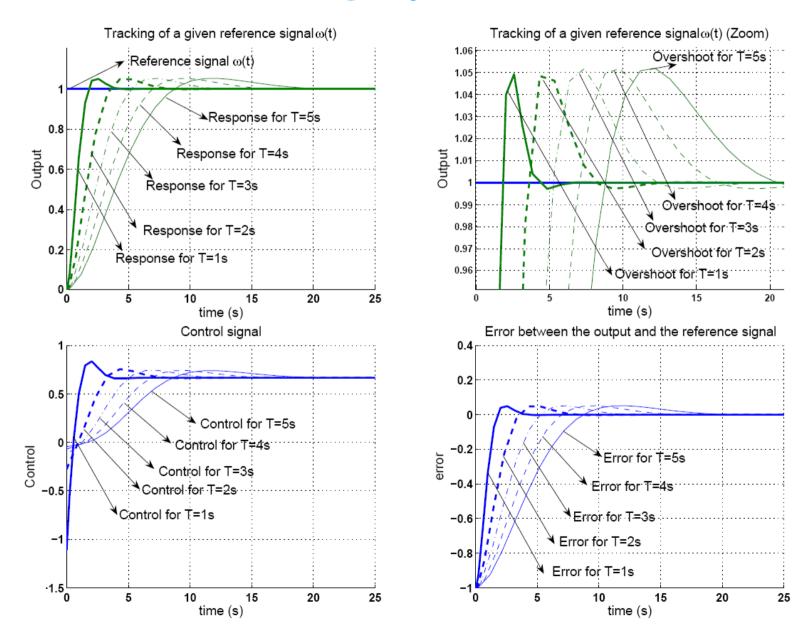
Parameter values vs. T:

Prediction time T (s)	$K_2 = [K_{20} K_{21} K_{22}]$
1	[3.33 2.5 1]
2	[0.83 1.25 1]
3	[0.37 0.83 1]
4	[0.21 0.63 1]
5	[0.13 0.5 1]

Control law:

$$u(x(t)) = \frac{-\sum_{l=0}^{2} K_{1l}(T,2) \Big[L_f^l h(x(t)) - \omega^{(l)}(t) \Big]}{L_g L_f h(x(t))}$$

4. Case of relative degree $\rho = 2$: simulation results



Conclusion and future work

Properties of NCGPC when applied to NL SISO systems with:

Relative degree equal to 1: stability, speed & accuracy (step)
Relative degree equal to 2: stability, speed & accuracy (step)

- Criteria based on error **and** control signal
- Robustness
- Nonlinear Discrete-time GPC
- Constraints on actuators
- Fault tolerant NDGPC

Thank you for your attention!

Appendix 1. Case of 1st-order system: some properties

	Function of T	Function of ω_c
Prediction horizon time	Т	$T = \frac{3}{2\omega_c}$
Time constant	$\theta = \frac{2T}{3}$	$\theta = \frac{1}{\omega_c}$
Time response	$t_r = 2T$	$t_r = \frac{3}{\omega_c}$
Cutoff frequency	$\omega_c = \frac{3}{2T}$	ω_c
Pole	$\lambda = -\frac{3}{2T}$	$\lambda = -\omega_c$
Characteristic polynomial	$\lambda + \frac{3}{2T} = 0$	$\lambda + \omega_c = 0$

Appendix 2. Case of 2nd-order system: some properties

	Formula	Function of T	Function of ω_n
Prediction horizon time (T)	$T = \sqrt[\rho]{\frac{\rho!}{\omega_n^2}} \frac{2\rho+1}{\rho+1}; \ T \in \mathbf{R}^+_*$	Т	$T \simeq \frac{1.83}{\omega_n}$
Resonant frequency ω_r (case of $0 < \xi < \frac{\sqrt{2}}{2}$)	$\omega_r = \omega_n \sqrt{1 - 2\xi^2}$	$\omega_r \simeq \frac{0.46}{T}$	$\omega_r \simeq 0.25\omega_n$
Damped natural frequency (ω_d)	$\omega_d = \omega_n \sqrt{1 - \xi^2}$	$\omega_d \simeq \frac{1.34}{T}$	$\omega_d \simeq 0.73 \omega_n$
Undamped natural frequency (ω_n)	$\omega_n = \sqrt{\frac{\rho!}{T^{\rho}} \frac{2\rho+1}{\rho+1}}$	$\omega_n \simeq \frac{1.83}{T}$	ω_n
Rise time (t_r)	$t_r = \frac{(\pi - \arccos \xi)}{\omega_n \sqrt{1 - \xi^2}}$	$t_r \simeq 1.47T$	$t_r \simeq \frac{3.19}{\omega_n}$
Time-to-peak (t_p)	$t_p = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}$	$t_p \simeq 2.34T$	$t_p \simeq \frac{4.3}{\omega_n}$
Settling time at 5% $(t_{s_{5\%}})$	$t_{s_{5\%}} = \frac{1}{\omega_n \xi} \ln\left(\frac{100}{5}\right) \simeq \frac{3}{\xi \omega_n}$	$t_{s_{5\%}}\simeq 2.39T$	$t_{s_{5\%}} \simeq \frac{4.38}{\omega_n}$
Settling time at 2% $(t_{s_{2\%}})$	$t_{s_{2\%}} = \frac{1}{\omega_n \xi} \ln\left(\frac{100}{2}\right) \simeq \frac{4}{\xi \omega_n}$	$t_{s_{2\%}}\simeq 3.19T$	$t_{s_{2\%}} \simeq \frac{5.84}{\omega_n}$
Period of oscillation (T_p)	$T_p = \frac{2\pi}{\omega_n \sqrt{1-\xi^2}}$	$T_p \simeq 4.71T$	$T_p \simeq \frac{8.62}{\omega_n}$
Characteristic polynomial	$\lambda^2 + 2\xi\omega_n\lambda + \omega_n^2 = 0$	$\lambda^2 + \frac{5}{2T}\lambda + \frac{10}{3T^2} = 0$	$\lambda^2 + 1.37\omega_n\lambda + \omega_n^2 = 0$
Poles	$p_{1,2} = -\omega_n [\xi \pm j \sqrt{1 - \xi^2}]$	$p_{1.2} \simeq -\frac{1}{T}(1.25 \pm 1.33j)$	$p_{1.2} \simeq -\omega_n (0.685 \pm 0.73j)$