
Properties of NCGPC applied to 

nonlinear SISO systems

with a relative degree one or two

EA 4353

with a relative degree one or two

M. DABO, N. LANGLOIS & H. CHAFOUK

GT Commande Prédictive Non Linéaire

ENSAM, Paris

13 janvier 2011



� Relative degree of nonlinear SISO systems

Outline

� Unconstrained NCGPC

� Case of relative degree equal to 1

� PropertiesProperties

� Example

� Case of relative degree equal to 2

� Properties

� Example

� Conclusion and future work



1. Relative degree of NL systems

� Definition [Isidori 1995]:
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� System considered:

(1)

The relative degree ρ of (1) is said to be well-defined if (1) has the relative degree ρ at 
all points in an operating set [Chen 2001]

The nonlinear SISO system (1) is said to have a relative degreeρ around x0 if:

(i) for all x in a neighbourhood of x0 and allk < ρ-1,

(ii)
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2. Unconstrained NCGPC
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� Criteria to minimize:

where

� The control law can be derived under the assumptions [Chen 2003]:

1: zero dynamics exist and are asymptotically stable;

2: all states are accessible for measurements;

3: the system has a well-defined relative degree;

4: the output and the reference are sufficiently many times continuously differentiable with respect totime;



2. Unconstrained NCGPC
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� Taylor’s series expansion:
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In a similar way:
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2. Unconstrained NCGPC
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� Taylor’s series expansion:
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2. Unconstrained NCGPC

From

� Criteria to minimize:
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where  Π(T, ρ) is of dimensions (ρ+ 1)×( ρ+ 1)

Let the prediction matrix ∫ ΛΛ=Π
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� Criteria minimization:



2. Unconstrained NCGPC

� Criteria minimization:
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2. Unconstrained NCGPC

D cannot vanish for all x ∈ X : see (ii)The relative degree is supposed well-defined 

� Criteria minimization:
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where Πss(dimensions 1×1) is the last element of vector Πs
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2. Unconstrained NCGPC
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� Resulting control law [Dabo 2009]:
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2. Unconstrained NCGPC
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� Change of coordinates:
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� Resulting linear (and controllable) system:

where

0)( 10 =+++= ρ
ρρρ λλλ LKKPCharacteristic polynomial:



3. Case of relative degree ρ = 1
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� Characteristic polynomial:

p
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� Corresponding system:

 1

� Parameter identification:

The application of NCGPC to SISO nonlinear system of dimension 1 equal to its relative
degree, leads, in the right space of coordinates, to a linear 1st-order system with transfer
function H1 defined by a time constant θ and a static gain G1 equal to the reference
signal ω1(t).

� Theorem 1:

32T=θ
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3. Case of relative degree ρ = 1: some properties

� Closed-loop system stability:

Prediction
horizon time

Time constant 32T=θ

T

� Characteristic parameters/times:

Settling time at 5%

Cut-off 
frequency

Tc 23=ω

Tt 2%5 ≈

Pole T23−=λ



3. Case of relative degree ρ = 1: example
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� System considered:

� System analysis:

� system dimension = 1

Prediction time
T (s)

K1= [K10 K11]

1 [1.5 1]

2 [0.75 1]

3 [0.5 1]

� Parameter values vs. T:

� system dimension = 1

� relative degree = 1

No zero dynamics

3 [0.5 1]

4 [0.375 1]

5 [0.3 1]

� Control law:
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� Desired output:

� step



3. Case of relative degree ρ = 1: simulation results



4. Case of relative degree ρ = 2
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� Characteristic polynomial:
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� Theorem 2:

The application of NCGPC to SISO nonlinear system of dimension 2 equal to its relative

degree, leads, in the right space of coordinates, to a 2nd-order linear transfer function with

a constant damping ratio  and a natural frequency .685.0≈ξ Tn 83.1≈ω

Tn 83.1≈ω

685.0≈ξ
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4. Case of relative degree ρ = 2: some properties

� Characteristic parameters/times:

Prediction
horizon time

Rise time

Time-to-peak

Ttr 47.1≈

T

Ttp 34.2≈

� Closed-loop system stability:

Time-to-peak

Resonant frequency Tr 46.0≈ω

Tt 39.2%5 ≈Settling time at 5%

Poles )33.125.1(1
2,1 j

T
±−=λ

Ttp 34.2≈

Percent overshoot 21.5≈PO



4. Case of relative degree ρ = 2: example
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� System considered:

Prediction time
T (s)

K2= [K20 K21 K22]

1 [3.33 2.5 1]

2 [0.83 1.25 1]

3 [0.37 0.831]

� Parameter values vs. T:

� System analysis:
3 [0.37 0.831]

4 [0.21 0.63 1]

5 [0.13 0.5 1]

� Control law:
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� system dimension = 2

� relative degree = 2

No zero dynamics

� Desired output:

� step



4. Case of relative degree ρ = 2: simulation results



Conclusion and future work

� Properties of NCGPC when applied to NL SISO systems with:

� Relative degree equal to 1: stability, speed & accuracy (step)

� Relative degree equal to 2: stability, speed & accuracy (step)

� Criteria based on error and control signal

� Robustness

� Nonlinear Discrete-time GPC

� Constraints on actuators

� Fault tolerant NDGPC
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Appendix 1. Case of 1st-order system: some properties



Appendix 2. Case of 2nd-order system: some properties


