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Context and motivation

I Uncertain system

→ Taking into account these uncertainties to the system
modeling.
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Uncertainty modeling

I Two approaches for uncertainty modeling
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Mathematical notations

I Interval: [a; b] = {x : a ≤ x ≤ b}
Unitary interval: B = [-1;1]
Matrix interval: [A] with Aij intervals.

I Minkowski sum: X ⊕ Y = {x + y : x ∈ X , y ∈ Y }.
I Zonotope: a convex symmetric polytope

m-zonotope: the set p ⊕ HBm = {p + Hz : z ∈ Bm},
with a vector p ∈ Rn and a matrix H ∈ Rn×m.

I P-radius of a zonotope Z = p ⊕ HBm:
L = max(‖z − p‖2

P), with z ∈ Z and P = PT � 0.
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Mathematical notations

Example: p1 =

[
0
0

]
, H1 =

[
1 2 3
3 2 1

]
,

p2 =

[
0
0

]
, H2 =

[
1 0.4 3
3 0.2 1

]
, P =

[
1 0
0 1

]
,

L1 = max
z∈Z1

‖z‖2
P = 72, L2 = max

z∈Z2

‖x‖2
P = 37.

Figure: Zonotopes and ellipsoids representing the associated
P-radius

Robust predictive control by zonotopic set-membership estimation 8 / 72



Context and
motivation

Mathematical
notations

Problem
formulation

Guaranteed state
estimation by
zonotopes

Single-Output case

Multi-Output case

Robust tube-based
constrained
predictive control
via zonotopic
set-membership
estimation

Conclusion and
future work

Outline

Context and motivation

Mathematical notations

Problem formulation

Guaranteed state estimation by zonotopes
Single-Output case
Multi-Output case

Robust tube-based constrained predictive control via
zonotopic set-membership estimation

Conclusion and future work

Robust predictive control by zonotopic set-membership estimation 9 / 72



Context and
motivation

Mathematical
notations

Problem
formulation

Guaranteed state
estimation by
zonotopes

Single-Output case

Multi-Output case

Robust tube-based
constrained
predictive control
via zonotopic
set-membership
estimation

Conclusion and
future work

Problem formulation

I Linear discrete-time system:{
xk+1 = Axk + Buk + ωk

yk = Cxk + vk
(1)

where

I xk ∈ Rnx system state vector,

I yk ∈ Rny measured output vector,

I ωk ∈ Rnx state disturbances,

I vk ∈ Rny measurement noise.

I Assumptions

1. Detectable, stabilizable.
2. ωk ∈W , vk ∈ V , with W a zonotope,V a box (for

simplicity, W ,V can be centered in the origin).
3. x0 unknown and x0 ∈ X0, with X0 is a zonotope.

Goal: Estimate the system state under uncertainties and
Stabilize system (1).
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Guaranteed state estimation algorithm

Consider the autonomous system:{
xk+1 = Axk + ωk

yk = Cxk + vk
(2)

General algorithm for set-membership estimation:

I Step 1: (Prediction)
Compute a set X̄k that
offers a bound for the
uncertain trajectory of the
system:
X̄k = AX̂k−1 ⊕W
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Guaranteed state estimation algorithm

Consider the autonomous system:{
xk+1 = Axk + ωk

yk = Cxk + vk
(3)

General algorithm for set-membership estimation:

I Step 1: (Prediction)

I Step 2: (Measurement)
Compute the
measurement consistent
state set Xyk

by using the
measurement yk .
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Guaranteed state estimation algorithm

Consider the autonomous system:{
xk+1 = Axk + ωk

yk = Cxk + vk
(4)

General algorithm for set-membership estimation:

I Step 1: (Prediction)

I Step 2: (Measurement)

I Step 3: (Correction)
Compute an outer
approximation X̂k of the
intersection between Xyk

and X̄k .

→ Similar to Kalman filter.
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Single-Output case

I Given the system:{
xk+1 = Axk + ωk

yk = cT xk + vk
(5)

with ωk ∈W a zonotope, vk ∈ V = σB1 an interval.

At the time instant k :
- Guaranteed state set at k − 1: X̂k−1 = p ⊕ HBr .
- Measured output: yk .
- Rewrite W = FBnx .

I Prediction:

X̄k = Ap ⊕
[
AH F

]
Br+nx (6)

I Measurement: Xyk
= {x ∈ Rn : |cT x − yk | ≤ σ}

I Correction: State estimation X̂k the outer
approximation of the intersection between a zonotope
and a strip.
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Intersection of a zonotope and a strip

Property 1: Zonotopic outer approximation of the
intersection between a zonotope and a strip1

Given:

I zonotope Z = p ⊕ HBr ⊂ Rn,

I strip S = {x ∈ Rn : |cT x − d | ≤ σ},
I vector λ ∈ Rn.

Define:

I vector p̂(λ) = p + λ(d − cTp) ∈ Rn,

I matrix Ĥ(λ) = [(I − λcT )H σλ] ∈ Rn×(m+1).

Then the following expression holds:
Z ∩ S ⊆ Ẑ (λ) = p̂(λ)⊕ Ĥ(λ)B r+1.

1Alamo et al. (2005)
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Single-Output case

Using Property 1: X̂k (λ) = p̂(λ)⊕ Ĥ(λ)Br+nx +1,
with p̂(λ) = Ap + λ(yk − cTAp)
and Ĥ(λ) =

[
(I − λcT )

[
AH F

]
σλ
]

How to choose λ?

I Minimizing the segments of the zonotope: simple but
not efficient.

I Minimizing the volume of the zonotope: more accurate
and more complex.

→ The proposed P-radius based approach combines the
advantages of the two existing approaches.
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Guaranteed state estimation by zonotopes

New criterion 2 to compute λ
Compute a matrix P = PT � 0 and a vector λ such that at
each sample time, the P-radius of the zonotopic state
estimation set is non-increasing.

2Le et al. (2011)
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Guaranteed state estimation by zonotopes

I The non-increasing condition leads to:

max
ẑ∈Br+nx +1

‖Ĥẑ‖2
P ≤ max

z∈Br
β‖Hz‖2

P + max
s∈Bnx

‖Fs‖2
2 +σ2 (7)

with ẑ =
[
zT sT η

]T
, η ∈ B1, β ∈ (0; 1).

I Denote by: Lk = max
x∈X̂k

(‖x − pk‖2
P) and ε = max

s∈Bnx
‖Fs‖2

2

I Then (7)↔ Lk+1 ≤ βLk + ε+ σ2

I Equivalent BMI (Bilinear Matrix Inequality) problem:
βP 0 0 ATP − AT cY T

∗ FTF 0 FTP − FT cY T

∗ ∗ σ2 Y Tσ
∗ ∗ ∗ P

 � 0 (8)

with β, P and Y = Pλ as decision variables.
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Minimization of the P-radius

I At infinity: L∞ = βL∞ + ε+ σ2 ⇔ L∞ = ε+σ2

1−β
I Consider an ellipsoid:

E = {x : xTPx ≤ ε+σ2

1−β } ⇔ E = {x : xT (1−β)P
ε+σ2 x ≤ 1}

I To minimize the size of the guaranteed set, the ellipsoid
of the smallest diameter must be found ⇒ Eigenvalue
Problem (EVP):3

max
τ,β,P

τ

subject to BMI 
τ > 0
P = PT � 0
(1−β)P
ε+σ2 � τ I

(9)

Diameter of the obtained ellipsoid: 2√
τ∗

.

3Boyd et al. (1994)
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Guaranteed state estimation by zonotopes

Global optimization problem

Solve max
τ,β,P,Y

τ

subject to BMIs

τ > 0
(1−β)P
ε+σ2 � τ I
βP 0 0 ATP − AT cY T

∗ FTF 0 FTP − FT cY T

∗ ∗ σ2 Y Tσ
∗ ∗ ∗ P

 � 0

(10)

-Solution obtained off-line by the Penbmi solver 4 or a search
loop on β ∈ (0, 1).
-Detectability leads to a feasible solution.

4Kočvara and Stingl (2003)
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Extension to Single-Output systems with
interval uncertainties 5

A is unknown, Schur stable, A ∈ [A].
Global optimization problem

Solve max
τ,β,P,Y

τ

subject to BMIs

τ > 0
(1−β)P
ε+σ2 � τ I
βP 0 0 ST

i P − ST
i cY T

∗ FTF 0 FTP − FT cY T

∗ ∗ σ2 Y Tσ
∗ ∗ ∗ P

 � 0

(11)

with β ∈ (0, 1) and Si the vertices of [A], i = 1, . . . , 2q and
q the number of interval elements in [A].

5Le et al. (2012a)
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Example

Consider the following linear discrete-time invariant system:
xk+1 =

[
0 −0.5
1 1 + 0.3δ

]
xk + 0.02

[
−6
1

]
ωk

yk =
[
−2 1

]
xk + 0.2vk

(12)

with ‖vk‖∞ ≤ 1,‖ωk‖∞ ≤ 1 and |δ| ≤ 1.

The initial state belongs to the box 3B2.
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Simulation results

(a) k = 1 (b) k = 2

(c) k = 3

Figure: Evolution of the guaranteed state estimation X̂k
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Simulation results

(a) x1 (b) x2

Figure: Guaranteed bounds obtained by proposed method

-The real state is found inside the guaranteed bound
→ good estimation.
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Simulation results

(a) x1 (b) x2

Figure: Comparison of the bound’s width obtained by different
methods in percent
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Simulation results

Figure: Comparison of the volume of zonotopic state estimation
set obtained by different methods

- The P-radius based approach is better than the segment
minimization approach and similar to the volume
minimization approach.

Robust predictive control by zonotopic set-membership estimation 28 / 72



Context and
motivation

Mathematical
notations

Problem
formulation

Guaranteed state
estimation by
zonotopes

Single-Output case

Multi-Output case

Robust tube-based
constrained
predictive control
via zonotopic
set-membership
estimation

Conclusion and
future work

Simulation results

Table: Total computation time after 50 time instants

Approach Time(second)

Segment minimization 0.0312
P-radius minimization (without off-line optimization (11) included) 0.0312
P-radius minimization (with off-line optimization (11) included) 0.9828
Volume minimization 10.3273

I Conclusion: The P-radius based approach offers a
trade-off between the complexity and the precision.
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Multi-Output case

I Given a system {
xk+1 = Axk + ωk

yk = Cxk + vk
(13)

with
I ωk ∈W a zonotope ⊂ Rnx

I vk ∈ V a box ⊂ Rny , V = ΣBny with
Σ = diag(σ1, . . . , σny )
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Solution for Multi-Output case
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Natural extensions of Single-Output case

At the time instant k :
- Guaranteed state set at k − 1: X̂k−1 = p̂k−1 ⊕ Ĥk−1Br

- Measured output vector: yk =
[
yk/1 . . . yk/ny

]T
- Rewrite W = FBnx , V = diag(σ1, . . . , σny )Bny

I Prediction:

X̄k = Ap̂k−1 ⊕
[
AĤk−1 F

]
Br+nx (14)

I Measurement: ny strips {x ∈ Rn : |cT
i x − yk/i | ≤ σi},

i = 1, . . . , ny
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Natural extensions of Single-Output case

I Correction:

Intersection with the first strip:

X̂k/1(λ1) = p̂k/1(λ1)⊕ Ĥk/1(λ1)Br+nx +1 (15)

with p̂k/1(λ1) = Ap̂k−1 + λ1(yk/1 − cT
1 Ap̂k−1)

Ĥk/1(λ1) =
[
(I − λ1c

T
1 )AĤk−1 (I − λ1c

T
1 )F σ1λ1

]
.

Intersection with the second strip:

X̂k/2(λ1, λ2) = p̂k/2(λ1, λ2)⊕ Ĥk/2(λ1, λ2)Br+nx +2 (16)

with p̂k/2(λ1, λ2) = p̂k/1(λ1) + λ2(yk/2 − cT
2 p̂k/1(λ1)) and

Ĥk/2(λ1, λ2) =
[
(I − λ2c

T
2 )Ĥk/1(λ1) σ2λ2

]
.
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Correction step
...
until the nth

y strip:

X̂k/ny
(λ1, ..., λny ) = p̂k/ny

(λ1, ..., λny )⊕

⊕Ĥk/ny
(λ1, ..., λny )Br+nx +ny

(17)

with

p̂k/ny
(λ1, ..., λny ) = p̂kny −1(λ1, ..., λny−1)+

+ λny (yk/ny
− cT

ny
p̂k/ny−1(λ1, ..., λny−1)) (18)

and

Ĥk/ny
(λ1, ..., λny ) =

=
[
(I − λny c

T
ny

)Ĥk/ny−1(λ1, ..., λny−1) σnyλny

]
(19)

→Guaranteed state estimation at k: X̂k = p̂k ⊕ ĤkBr+nx +ny

with p̂k = p̂k/ny
, Ĥk = Ĥk/ny

.
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Illustration of natural extension of
Single-Output case

Figure: State estimation of the 2-output system
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Equivalent Single-Output approach

Approach 1 to compute λi : ESO approach

1. For j = 1, ..., ny

Step j : Using the strip of the measurement yk/j

compute λj by solving (10);
End.

2. The guaranteed state estimation is computed by the
equation (17) with the known vectors λ1,. . . ,λny .
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Equivalent single-output with coupling
effect approach

Approach 2 to compute λi : ESOCE approach

1. Step 1: Using the measurement yk/1 and (10), compute
λ1;

2. For j = 2, ..., ny

Step j : Using the measurement yk/j and the
previous obtained vectors λ1, ..., λj−1, compute λj by
solving (20).
End.
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max
τ,β,P,Yj

τ

subject to BMIs

τ > 0
(1−β)P

σ2
1 +...+σ2

j +ε
� τ I

βP 0 0 · · · 0 B1

∗ F T F 0 · · · 0 B2

∗ ∗ σ2
1 · · · 0 B3

...
...

...
. . .

...
...

∗ ∗ ∗ · · · σ2
j Bj+2

∗ ∗ ∗ · · · ∗ P


� 0

(20)

with β ∈ (0, 1) and

B1 = ((

j∏
i=1

(I − λj+1−i cT
j+1−i ))A)T P

B2 = ((

j∏
i=1

(I − λj+1−i cT
j+1−i ))F )T P

B3 = (

j−1∏
i=1

(I − λj+1−i cT
j+1−i )σ1λ1)T P

.

.

.

Bj = ((I − λj cT
j )(I − λj−1cT

j−1)σj−2λj−2)T P

Bj+1 = ((I − λj cT
j )σj−1λj−1)T P

Bj+2 = (σjλj )T P

(21)
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Polynomial Matrix Inequality approach

Approach 3: PMI approach
Computing all λ1, . . . , λny at the same time
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max
τ,β,P,λ1,...,λny

τ

subject to PMIs

τ > 0
(1−β)P

σ2
1 +...+σ2

ny
+ε
� τ I

βP 0 0 · · · 0 B1

∗ F T F 0 · · · 0 B2

∗ ∗ σ2
1 · · · 0 B3

...
...

...
. . .

...
...

∗ ∗ ∗ · · · σ2
ny

Bny +2

∗ ∗ ∗ · · · ∗ P


� 0

(22)

with β ∈ (0, 1) and

B1 = ((

ny∏
i=1

(I − λny +1−i cT
ny +1−i ))A)T P

B2 = ((

ny∏
i=1

(I − λny +1−i cT
ny +1−i ))F )T P

B3 = (

ny −1∏
i=1

(I − λny +1−i cT
ny +1−i )σ1λ1)T P

.

.

.

Bny = ((I − λny cT
ny

)(I − λny −1cT
ny −1)σny −2λny −2)T P

Bny +1 = ((I − λny cT
ny

)σny −1λny −1)T P

Bny +2 = (σny λny )T P

(23)
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LMI relaxation solution
PMI problem: difficult to solve → Sub-optimal solution: use
of LMI relaxation 6

Example: min
x

(−x2
1 − x2

2 )

subject to PMI:

[
1− 4x1x2 x1

x1 4− x2
1 − x2

2

]
� 0

Change of variables:
y10 = x1, y01 = x2, y20 = x2

1 , y02 = x2
2 , y11 = x1x2.

Relaxed optimization problem:
min

y
(−y20 − y02)

subject to LMIs:

 1 ∗ ∗
y10 y20 ∗
y01 y11 y02

 � 0 (Moment matrix)[
1− 4y11 ∗

y10 4− y20 − y02

]
� 0

(24)

6Henrion and Laserre (2006)
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LMI relaxation solution
The same relaxation procedure is applied to the PMI
problem (22) with the change of variables:

β = y100...0, P =

[
y01...0 ... y00...1...0

... ... ...

]
,

λT
1 =

[
y00...1...0 ...

]
,..., λT

ny
=
[
y00...1...0 ... y00...01

]
Solve the optimization problem
max
τ,y

τ

subject to LMIs
M1 =


1 ∗ ∗ ∗

y10...0 y20...0 ... ∗
y01...0 y11...0 ... ∗

...
...

. . .
...

y00..111 ... ... y00...222

 � 0

M2 � 0

(25)

M2 the equivalent LMI expressions obtained from the PMIs in (22)

using the new scalar decision variables.
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Direct Multi-Output solution

Previous methods:
I Advantage: direct application of Single-Output case.
I Inconvenient: conservative result due to not computing

directly Xyk
.

Direct Multi-Output solution:
I Consistent state set created by all the measurements:

Xyk
= {x ∈ Rnx : |Cx − yk | ∈ V } ⇒ a polytope.

I State estimation obtained via the outer approximation
of the intersection of zonotope X̄k and polytope Xyk

.
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Intersection of a zonotope and a polytope

Proposition: Given:

I zonotope Z = p ⊕ HBr ⊂ Rn,

I polytope P = {x ∈ Rn, d ∈ Rm : |Cx − d | ≤

σ1
...
σm

}
(σi ∈ R+),

I matrix Λ ∈ Rn×m

Define:

I vector p̂(Λ) = p + Λ(d − Cp) ∈ Rn,

I matrix Ĥ(Λ) =
[
(I − ΛC )H ΛΣ

]
, with

Σ = diag(σ1, . . . , σny ).

Then Z ∩ P ⊆ Ẑ (Λ) = p̂(Λ)⊕ Ĥ(Λ)B r+m.
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Intersection of a zonotope and a polytope

Figure: Zonotopic approximation of the intersection between a
zonotope and a polytope
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Direct Multi-Output solution

Similar to Single-Output case:
Based on the estimation at k − 1: X̂k−1 = p ⊕ HBr ,
the state estimation set at k is:

X̂k (Λ) = p̂(Λ)⊕ Ĥ(Λ)Br+nx +ny (26)

with p̂(Λ) = Ap + Λ(yk − CAp)
and Ĥ(Λ) =

[
(I − ΛC )

[
AH F

]
ΛΣ
]

I Remark:

- Single-Output case: λ is a vector.
- Multi-Output case: Λ is a matrix.
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Direct Multi-Output solution

Λ ∈ Rnx×ny computed to ensure the non-increasing property
of the P-radius of the zonotopic guaranteed state estimation:

max
τ,β,P,Y

τ

subject to BMIs

τ > 0
(1−β)P

σ2
1+...+σ2

ny +ε
� τ I

βP 0 0 ATP − ATCTY T

∗ FTF 0 FTP − FTCTY T

∗ ∗ ΣT Σ Y T Σ
∗ ∗ ∗ P

 � 0
(27)

with β ∈ (0, 1), P and Y = PΛ as decision variables.
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Example

Consider the following linear discrete-time invariant system:
xk+1 =

[
0 −0.5
1 1 + 0.3δ

]
xk +

[
0.1 0
0 0.1

]
ωk

yk =

[
−2 1
1 1

]
xk +

[
0.2 0
0 0.2

]
vk

(28)

with ‖vk‖∞ ≤ 1,‖ωk‖∞ ≤ 1, ‖δ‖ ≤ 1.

The initial state belongs to the box 3B2.
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Simulation results

Figure: Evolution of the guaranteed state estimation

-The guaranteed state estimation decreases in time.
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Simulation results

(a) x1 (b) x2

Figure: Comparison of the state bound’s width obtained by
ESOCE, PAZI and SVD approaches

Robust predictive control by zonotopic set-membership estimation 51 / 72



Context and
motivation

Mathematical
notations

Problem
formulation

Guaranteed state
estimation by
zonotopes

Single-Output case

Multi-Output case

Robust tube-based
constrained
predictive control
via zonotopic
set-membership
estimation

Conclusion and
future work

Simulation results

Table: Total computation time after 50 samples

Approach Time(second)

PAZI approach (without off-line LMI optimization included) 0.0468
PAZI approach (with off-line LMI optimization included) 0.2808
ESOCE approach (with off-line optimization included) 1.4664
Singular Value Decomposition approach7 1.5444

I Conclusion: PAZI approach offers a low complexity of
computation and good precision of estimation.

7Combastel (2003)
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Outline

Context and motivation

Mathematical notations

Problem formulation

Guaranteed state estimation by zonotopes
Single-Output case
Multi-Output case

Robust tube-based constrained predictive control via
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Conclusion and future work
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Robust tube-based constrained MPC via
zonotopic set-membership estimation

Classical output feedback MPC tube-based 8:{
xk+1 = Axk + Buk + ωk

yk = Cxk + vk
(29)

Luenberger observer:{
x̂k+1 = Ax̂k + Buk + L(yk − ŷk )
ŷk = Cx̂k

(30)

Difference equation of state estimation error (x̃k = xk − x̂k ):
x̃k+1 = (A− LC )x̃k + ωe

k , with A− LC stable and
ωe

k = ωk − Lvk .
Remark : x̃k ∈ invariant set Se

k → x̃k+1 ∈ invariant set
Se

k+1 = (A− LC )Se
k ⊕W e with W e = W ⊕ (−LV )

8Mayne et al. (2009)
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Robust tube-based constrained MPC via
zonotopic set-membership estimation

Proposed method : Replace Luenberger observer by the
zonotopic guaranteed state estimation.
Consider the center of the zonotopic guaranteed state
estimation as the estimated state: x̂k = pk .

Remark : x̃k = xk − x̂k ∈ invariant zonotope Se
k

→x̃k+1 ∈ invariant Se
k+1 = (I − ΛC )ASe

k ⊕W e , with
W e = (I − ΛC )W ⊕ (−ΛV )
The size of Se

k decreases by appropriately choosing Λ.
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Robust tube-based constrained MPC via
zonotopic set-membership estimation

Nominal system without disturbances:

xk+1 = Axk + Buk (31)

To counteract the disturbances, the trajectory is desired to
lie close to the nominal trajectory:

uk = uk + Kek (32)

where ek = x̂k − xk satisfies the difference equation:
ek+1 = (A + BK )ek + w co

k , where A + BK stable,
ωco

k ∈W co
k = ΛCASe

k ⊕ ΛCW ⊕ ΛV
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Robust tube-based constrained MPC via
zonotopic set-membership estimation

How to define uk ?
Consider the following cost function at time instant k :

VN(x , u) = Vf (xN) +
N−1∑
i=0

l(x i , ui ) (33)

with u = {u0, ..., uN−1}, l(x , u) = 0.5(xTQx + uTRu),
Vf (x) = 0.5xTPf x ,
under the following time varying constraints:

ui ∈ Uk+i , i ∈ N[0,N−1]

x i ∈ X k+i , i ∈ N[0,N−1]

xN ∈ X f

(34)

Remark: Sets Uk+i and X k+i are time varying due to the
decreasing of the estimation set.
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Robust tube-based constrained MPC via
zonotopic set-membership estimation

Solution of the optimization problem:

(x∗(x̂ , k), u∗(x̂ , k)) = arg min
x ,u
{VN(x , u)} (35)

The control law applied to the system:

κN(x̂ , k) = û∗(0, x̂ , k) + K (x̂k − x∗(x̂ , k)) (36)

with û∗(0, x̂ , k) the first element of the sequence u∗(x̂ , k).

Using the control law (36), (x , x̂) is robustly steered to some
sets containing the origin, exponentially fast satisfying all
constraints8.

8Mayne et al. (2009)
Robust predictive control by zonotopic set-membership estimation 58 / 72



Context and
motivation

Mathematical
notations

Problem
formulation

Guaranteed state
estimation by
zonotopes

Single-Output case

Multi-Output case

Robust tube-based
constrained
predictive control
via zonotopic
set-membership
estimation

Conclusion and
future work

Example

Consider the following linear discrete-time invariant system:

xk+1 =

[
1 1.1
0 1

]
xk +

[
1
1

]
uk + ωk

yk =
[
−2 1

]
xk + vk

I ‖vk‖∞ ≤ 0.05,‖ωk‖∞ ≤ 0.1.

I (x , u) ∈ X × U, with:
X = {x ∈ R2 : x1 ∈ [−50, 3], x2 ∈ [−50, 3]}
U = {u ∈ R : |u| ≤ 9}.
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Example

Figure: Control signal

-The control constraint is respected.
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Example

Figure: Tube trajectory of the closed-loop response of the system
fulfilling the state constraint

-The state constraints are respected.
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Example

Figure: Zoom of tube trajectory of the closed-loop response of the
system

-The size of the tube decreases in time.
-The state converges to an invariant set while respecting the
constraints.
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Example

Figure: Closed-loop response of the system

-The system is stable in the sense of Input to State Stability.
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Application to a magnetic levitation
system

Figure: Magnetic levitation system
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Application to a magnetic levitation
system

I Consider the continuous-time model9: ẋ =

[
0 1
2g
x0

0

]
x +

[
0
g
i0

]
u

y =
[
1 0

]
x

(37)

with g = 9.81m/s2, x0 = 0.019m, i0 = 0.436A.

I This model is next discretized with Ts = 0.1s.

I Additional model disturbances
ωk ∈W = {w ∈ R : |w | ≤ 1} and measurement noise
vk ∈ V = {v ∈ R : |v | ≤ 0.05}

I Constraints: X = {x ∈ R2 : |x1| ≤ 0.5, |x2| ≤ 10},
U = {u ∈ R : |u| ≤ 5}

9Le et al. (2012b)
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Application to a magnetic levitation
system

(a) Tube trajectory (b) Zoom

Figure: Tube trajectory of the controlled magnetic levitation
system

- In this case, the real system enters to the terminal set after
two time instants.
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Application to a magnetic levitation
system

(a) Real state and nominal state of
the closed-loop

(b) Control signal

- Guarateeing stability of the output feedback system while
respecting the constraints.
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(c) Pendulum position (d) Pendulum speed
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Conclusion

I Estimation

1. A new method based on the minimization of the
P-radius to solve the problem of set-membership
estimation using zonotope is presented.

2. Both Single-Output and Multi-Output systems were
considered subject to interval uncertainties, unknown
but bounded disturbances and measurement noises.

3. A good trade-off solution between precision and
complexity compared to existing zonotopic
set-membership estimation techniques is illustrated.

I Control

1. The zonotopic set-membership estimation is used in the
context of Tube MPC, offering good performance.
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Future work

I Output feedback control law based on the P-radius
based zonotopic set-membership estimation for systems
with interval parametric uncertainties in the presence of
disturbances, measurement noises and constraints.

I Extension of the estimation technique to time delay
systems.

I Extension to fault diagnosis problem and fault tolerant
control.
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