

SUPÉRIEURE D'ÉLECTRICITÉ



## Set-membership state estimation for uncertain systems based on zonotopes and ellipsoids

S. Ben Chabane <sup>1</sup>, C. Stoica Maniu <sup>1</sup>, D. Dumur <sup>1</sup>, T. Alamo <sup>2</sup>, E. F. Camacho <sup>2</sup>

<sup>1</sup>SUPELEC Systems Sciences (E3S) – Automatic Control Department, Gif sur Yvette, France

<sup>2</sup>Department of Ingeniería de Sistemas y Automática, Universidad de Sevilla, Sevilla, Spain

GT-CPNL & GT-MEA, Paris, April 3, 2013

#### Outline

#### Introduction

#### Problem formulation

- Objective
- General algorithm for set-membership estimation

#### Otations and properties

#### Ellipsoidal state estimation

- Prediction step
- Correction step

#### 5 Zonotopic state estimation

- Prediction step
- Correction step
- P-radius minimization method

#### 6 Proposed approach

Conclusion and perspectives



Knowing the state of a system is crucial for solving many control problems.



Objective General algorithm for set-membership estimati

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$
(1)

where  $x_k \in \mathbb{R}^n$ ,  $y_k \in \mathbb{R}$ ,  $\omega_k \in \mathbb{R}^n$  and  $v_k \in \mathbb{R}$ . The pair  $(c^{\top}, A)$  is detectable.

#### Objective

Assume that  $x_0 \in \mathcal{X}_0$ ,  $\omega_k \in \mathcal{W}$  and  $v_k \in \mathcal{V}$  for all k > 0.

Set-membership approach:

$$x_k \in \hat{\mathcal{X}}_k \Rightarrow x_{k+1} \in \hat{\mathcal{X}}_{k+1}.$$

ightarrow Find the optimal set  $\hat{\mathcal{X}}_{k+1}$  that contains  $x_{k+1}$ 

Objective General algorithm for set-membership estimati

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$
(1)

where  $x_k \in \mathbb{R}^n$ ,  $y_k \in \mathbb{R}$ ,  $\omega_k \in \mathbb{R}^n$  and  $v_k \in \mathbb{R}$ . The pair  $(c^{\top}, A)$  is detectable.

#### Objective

Assume that  $x_0 \in \mathcal{X}_0$ ,  $\omega_k \in \mathcal{W}$  and  $v_k \in \mathcal{V}$  for all k > 0.

Set-membership approach:

$$x_k \in \hat{\mathcal{X}}_k \Rightarrow x_{k+1} \in \hat{\mathcal{X}}_{k+1}.$$

 $\rightarrow$  Find the optimal set  $\hat{\mathcal{X}}_{k+1}$  that contains  $x_{k+1}$ .

Objective General algorithm for set-membership estimation

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Objective General algorithm for set-membership estimation

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Prediction step

$$\bar{\mathcal{X}}_{k+1} = A\hat{\mathcal{X}}_k \cup F\mathcal{W}$$

where  $\bar{\mathcal{X}}_{k+1}$  is a predicted state estimation set.



Objective General algorithm for set-membership estimation

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Prediction step

$$\bar{\mathcal{X}}_{k+1} = A\hat{\mathcal{X}}_k \cup F\mathcal{W}$$

where  $\bar{\mathcal{X}}_{k+1}$  is a predicted state estimation set.

Measurement

$$\mathcal{X}_{y_{k+1}} = \{ x_{k+1} \in \mathbb{R}^n : |c^\top x_{k+1} - y_{k+1}| \le \sigma \}$$

where  $\mathcal{X}_{y_{k+1}}$  is the consistent state set by using the measurement  $y_{k+1}$ .



Objective General algorithm for set-membership estimation

#### System

Consider the linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Prediction step

$$\bar{\mathcal{X}}_{k+1} = A\hat{\mathcal{X}}_k \cup F\mathcal{W}$$

where  $\bar{\mathcal{X}}_{k+1}$  is a predicted state estimation set.

Measurement

$$\mathcal{X}_{y_{k+1}} = \{x_{k+1} \in \mathbb{R}^n : |c^{\top} x_{k+1} - y_{k+1}| \le \sigma\}$$

where  $\mathcal{X}_{y_{k+1}}$  is the consistent state set by using the measurement  $y_{k+1}$ .

Correction step

$$\hat{\mathcal{X}}_{k+1} \supseteq \bar{\mathcal{X}}_{k+1} \cap \mathcal{X}_{y_{k+1}}$$

where  $\hat{\mathcal{X}}_{k+1}$  is the guaranteed state estimation set.





#### Mathematical notations

• Interval:  $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ Unitary interval:  $\mathbf{B} = [-1, 1]$ Box (interval vector):  $([a_1, b_1], \dots, [a_n, b_n])^\top \subset \mathbb{R}^n$ Unitary box:  $\mathbf{B}^n = \{x \in ([-1, 1], \dots, [-1, 1])^\top\} \subset \mathbb{R}^n$ .

• Strip: 
$$\mathcal{S}(y,d) = \{x \in \mathbb{R}^n : |y - d^\top x| \le 1\}.$$

- Minkovsky sum:  $\mathcal{A} \oplus \mathcal{B} = \{a + b : a \in \mathcal{A}, b \in \mathcal{B}\}.$
- Ellipsoid: *E*(*c*, *P*) = {*x* : (*x* − *c*)<sup>T</sup>*P*<sup>−1</sup>(*x* − *c*) ≤ 1}, where *c* ∈ ℝ<sup>n</sup> is the center and a matrix *P* = *P*<sup>T</sup> ≻ 0 characterizes its shape and size.

n times

Zonotope: a convex symmetric polytope.
 *m*-zonotope: the set Z = p ⊕ HB<sup>m</sup> = {x ∈ ℝ<sup>n</sup> : x = p + Hz, z ∈ B<sup>m</sup>}, with a vector p ∈ ℝ<sup>n</sup> and a matrix H ∈ ℝ<sup>n×m</sup>.

• *P*-radius of a *m*-zonotope 
$$\mathcal{Z} = p \oplus H\mathbf{B}^m$$
:  
 $L = \max_{x \in \mathcal{Z}} ||x - p||_P^2 = \max_{x \in \mathcal{Z}} (x - p)^\top P(x - p)$ , with  $P = P^\top \succ 0$ 

#### Properties

- **Property 1**: Affine transformation of an ellipsoid  $A \mathcal{E}(c, P) + b = \mathcal{E}(Ac + b, APA^{\top})$ , where  $A \in \mathbb{R}^{n \times n}$  and  $b \in \mathbb{R}^{n}$ .
- **Property 2**: Sum of two ellipsoids [Durieu et al., 2001]  $\mathcal{E}_1(c_1, P_1) \cup \mathcal{E}_2(c_2, P_2) \subseteq \mathcal{E}(c, P)$ , with  $c = c_1 + c_2$ ,  $P = \phi_1^{-1}P_1 + \phi_2^{-1}P_2$  and  $\phi_1 + \phi_2 = 1$ .
- **Property 3**: Intersection between an ellipsoid and a strip [Fogel:82] [Fogel and Huang, 1982]  $\mathcal{E}(c,P)\cap\mathcal{S}(y,d)\subseteq\mathcal{E}'(c',P'), ext{ with } c'=c+rac{\psi\delta}{1+\omega/\omega}Pd, \ \psi\geq 0,$  $P' = (1 + \psi - \frac{\psi \delta^2}{1 + \psi \sigma})(P - \frac{\psi}{1 + \psi \sigma}Pdd^\top P), g = d^\top Pd$  and  $\delta = y - d^\top c$ . • Property 4: Affine transformation of a zonotope [Combastel, 2003]  $A\mathcal{Z} = (Ap) \oplus (AH)\mathbf{B}^m$ , with  $A \in \mathbb{R}^{n \times n}$ . • Property 5: The Minkovsky sum of two centered zonotopes [Combastel, 2003]  $\mathcal{Z}_1 \oplus \mathcal{Z}_2 = \begin{bmatrix} H_1 & H_2 \end{bmatrix} \mathbf{B}^{m_1+m_2}$ , with  $\mathcal{Z}_1 = H_1 \mathbf{B}^{m_1} \subseteq \mathbb{R}^n$  and  $\mathcal{Z}_2 = H_2 \mathbf{B}^{m_2} \subseteq \mathbb{R}^n$ . • Property 6: Intersection between a zonotope and a strip [Le, 2012]  $\mathcal{Z} \cap \mathcal{S}(\frac{d}{d}, \frac{c}{d}) \subseteq \hat{\mathcal{Z}}(\lambda) = \hat{p}(\lambda) \oplus \hat{H}(\lambda) \mathbf{B}^{m+1}, \text{ with } \hat{p}(\lambda) = p + \lambda(d^{\top} - c^{\top}p),$  $\hat{H}(\lambda) = \begin{bmatrix} (I - \lambda c^{\top})H & \sigma \lambda \end{bmatrix}$  and  $\lambda \in \mathbb{R}^n$ .

Prediction step Correction step

#### System

$$\begin{array}{l} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{array}$$

Assume that  $x_0 \in \mathcal{E}_0(c_0, P_0)$ ,  $\mathcal{W} = \mathcal{E}(0, I_n)$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \mathcal{E}_k(c_k, P_k)$ .

#### Prediction step:

$$\begin{split} \bar{\mathcal{E}}_{k+1}(c_{k+1}, P_{k+1}) &= \hat{\mathcal{E}}_k(Ac_k, AP_kA^{\top}) \cup \mathcal{E}(0, FF^{\top}) \\ Property \ 2 \ \text{implies that} \ \exists \phi = [\phi_1, \phi_2]^{\top} \in \mathbb{R}^2 \text{ such that:} \end{split}$$

$$\begin{cases} c_{k+1} = Ac_k \\ P_{k+1} = \phi_1^{-1} P_1 + \phi_2^{-1} P_2 \end{cases}$$

with  $P_1 = AP_k A^{\top}$ ,  $P_2 = FF^{\top}$  and  $\phi_1 + \phi_2 = 1$ .





Prediction step Correction step

#### System

$$\begin{array}{l} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{array}$$

Assume that  $x_0 \in \mathcal{E}_0(c_0, P_0)$ ,  $\mathcal{W} = \mathcal{E}(0, I_n)$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \mathcal{E}_k(c_k, P_k)$ .

#### Prediction step:

$$\begin{split} \bar{\mathcal{E}}_{k+1}(c_{k+1}, P_{k+1}) &= \hat{\mathcal{E}}_k(Ac_k, AP_kA^{\top}) \cup \mathcal{E}(0, FF^{\top}) \\ Property \ 2 \ \text{implies that} \ \exists \phi = [\phi_1, \phi_2]^{\top} \in \mathbb{R}^2 \text{ such that:} \end{split}$$

$$\begin{cases} c_{k+1} = Ac_k \\ P_{k+1} = \phi_1^{-1} P_1 + \phi_2^{-1} P_2 \end{cases}$$

with  $P_1 = AP_k A^{\top}$ ,  $P_2 = FF^{\top}$  and  $\phi_1 + \phi_2 = 1$ .



# Minimization of the size of $\overline{\mathcal{E}}_{k+1}(c_{k+1}, P_{k+1})$ Trace criterion:<br/>[Durieu et al., 2001]<br/> $\phi^* = \min_{\phi} tr(P_{k+1})$ Determinant criterion:<br/>[Durieu et al., 2001]<br/> $\phi^* = \min_{\phi} \log \det(P_{k+1})$

Prediction step Correction step

#### System

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Assume that  $x_0 \in \mathcal{E}_0(c_0, P_0)$ ,  $\mathcal{W} = \mathcal{E}(0, I_n)$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \mathcal{E}_k(c_k, P_k)$ .

#### Correction step:





#### Minimization of the size of $\widehat{\mathcal{E}}_{k+1}(c_{k+1}, \mathcal{P}_{k+1})$

 $\begin{array}{l} \underset{[\text{Durieu of all of the second states tates of the second states of the second state$ 

 $\begin{array}{l} \begin{array}{l} \textbf{Determinant criterion:}\\ [Durieu et al., 2001] \\ \psi^* = \min_{\psi \geq 0} \log \det(\hat{P}_{k+1}) \end{array}$ 

Prediction step Correction step

#### System

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Assume that  $x_0 \in \mathcal{E}_0(c_0, P_0)$ ,  $\mathcal{W} = \mathcal{E}(0, I_n)$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \mathcal{E}_k(c_k, P_k)$ .

#### Correction step:

$$\hat{\mathcal{E}}_{k+1}(\hat{c}_{k+1}, \hat{P}_{k+1} \supseteq \bar{\mathcal{E}}_{k+1}(c_{k+1}, P_{k+1}) \cap \mathcal{X}_{y_{k+1}}$$

$$Property 3 \text{ implies that } \exists \psi \ge 0 \text{ such that:}$$

$$\hat{c}_{k+1} = c_{k+1} + \frac{\psi\delta}{1+\psi g} P_{k+1} \frac{c}{\sigma}$$

$$\hat{P}_{k+1} = (1+\psi - \frac{\psi\delta^2}{1+\psi g})(P_{k+1} - \frac{\psi}{1+\psi g} P_{k+1} \frac{c}{\sigma} \frac{c^{\top}}{\sigma} P_{k+1})$$

$$\text{with } g = \frac{c^{\top}}{\sigma} P_{k+1} \frac{c}{\sigma} \text{ and } \delta = \frac{y_{k+1}}{\sigma} - \frac{c^{\top}}{\sigma} c_{k+1}.$$

Minimization of the size of 
$$\hat{\mathcal{E}}_{k+1}(c_{k+1}, P_{k+1})$$

$$\begin{array}{l} \underset{[\text{Durieu of all, 2001}]}{\text{Trace criterion:}}\\ [\text{Durieu et al., 2001}]\\ \psi^* = \underset{\psi \geq 0}{\min} tr(\hat{P}_{k+1}) \end{array}$$

 $\begin{array}{l} \textbf{Determinant criterion:}\\ [Durieu et al., 2001]\\ \psi^* = \min_{\psi \geq 0} \log \det(\hat{P}_{k+1}) \end{array}$ 

Prediction step Correction step P-radius minimization method

#### System

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Assume that  $x_0 \in \mathcal{Z}_0(c_0, H_0)$ ,  $\mathcal{W} = \mathbf{B}^n$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \hat{\mathcal{Z}}_k(\hat{p}_k, \hat{H}_k)$ .

#### Prediction step:

$$\bar{\mathcal{Z}}_{k+1} = A\hat{\mathcal{Z}}_k \oplus F\mathcal{W} = A\hat{p}_k \oplus \begin{bmatrix} \hat{H}_k & F \end{bmatrix} \mathbf{B}^{r+n}.$$



Prediction step Correction step P-radius minimization method

#### System

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Assume that  $x_0 \in \mathcal{Z}_0(c_0, H_0)$ ,  $\mathcal{W} = \mathbf{B}^n$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \hat{\mathcal{Z}}_k(\hat{p}_k, \hat{H}_k)$ .

#### Prediction step:

$$\begin{split} \bar{\mathcal{Z}}_{k+1} &= A\hat{\mathcal{Z}}_k \oplus F\mathcal{W} = A\hat{p}_k \oplus \begin{bmatrix} \hat{H}_k & F \end{bmatrix} \mathbf{B}^{r+n}.\\ \mathbf{Correction step:}\\ \bar{\mathcal{Z}}_{k+1} \cap \mathcal{X}_{y_{k+1}} \subseteq \hat{\mathcal{Z}}_{k+1}(\lambda) = \hat{p}_{k+1}(\lambda) \oplus \hat{H}_{k+1}(\lambda) \mathbf{B}^{r+n+1}\\ \text{with} \end{split}$$

$$\begin{cases} \hat{p}_{k+1}(\lambda) = A\hat{p}_k + \lambda \left( y_{k+1} - c^\top A \hat{p}_k \right) \\ \hat{H}_{k+1}(\lambda) = \left[ \left( I - \lambda c^\top \right) A \hat{H}_k \quad \left( I - \lambda c^\top \right) F \quad \sigma \lambda \right] \end{cases}$$

How to compute the vector  $\lambda \in \mathbb{R}^n$  in order to minimize the size of the zonotope  $\hat{\mathcal{Z}}_{k+1}?$ 

Prediction step Correction step P-radius minimization method

#### System

$$\begin{cases} x_{k+1} = Ax_k + F\omega_k \\ y_k = c^\top x_k + \sigma v_k \end{cases}$$

Assume that  $x_0 \in \mathcal{Z}_0(c_0, H_0)$ ,  $\mathcal{W} = \mathbf{B}^n$ ,  $\mathcal{V} = \mathbf{B}$  and  $x_k \in \hat{\mathcal{Z}}_k(\hat{p}_k, \hat{H}_k)$ .

#### Prediction step:

$$\bar{\mathcal{Z}}_{k+1} = A\hat{\mathcal{Z}}_k \oplus F\mathcal{W} = A\hat{p}_k \oplus \begin{bmatrix} \hat{H}_k & F \end{bmatrix} \mathbf{B}^{r+n}.$$
Correction step:  
 $\bar{\mathcal{Z}}_{k-1} \oplus \mathcal{Y}_k = \begin{bmatrix} \hat{\mathcal{Z}}_{k-1} & (\lambda) & \hat{\mathcal{D}}_{k-1} \end{bmatrix} \oplus \begin{bmatrix} \hat{H}_{k-1} & (\lambda) & \hat{H}_{k-1} \end{bmatrix} \mathbf{B}^{r+n+1}.$ 

 $\mathcal{Z}_{k+1} \cap \mathcal{X}_{y_{k+1}} \subseteq \mathcal{Z}_{k+1}(\lambda) = \hat{p}_{k+1}(\lambda) \oplus H_{k+1}(\lambda) \mathbf{B}^{r+n+1}$ with

$$\begin{cases} \hat{p}_{k+1}(\boldsymbol{\lambda}) = A\hat{p}_k + \boldsymbol{\lambda} \left( y_{k+1} - \boldsymbol{c}^\top A \hat{p}_k \right) \\ \hat{H}_{k+1}(\boldsymbol{\lambda}) = \left[ \left( I - \boldsymbol{\lambda} \boldsymbol{c}^\top \right) A \hat{H}_k \quad \left( I - \boldsymbol{\lambda} \boldsymbol{c}^\top \right) F \quad \sigma \boldsymbol{\lambda} \right] \end{cases}$$

How to compute the vector  $\lambda \in \mathbb{R}^n$  in order to minimize the size of the zonotope  $\hat{\mathcal{Z}}_{k+1}$ ?

Prediction step Correction step *P*-radius minimization method



The *P*-radius of the state estimation zonotope at time *k* is:

$$L_k = \max_{x \in \hat{\mathcal{Z}}_k(\lambda)} \|x - \hat{p}_k\|_P^2 = \max_{x \in \hat{\mathcal{Z}}_k(\lambda)} (x - \hat{p}_k)^\top P(x - \hat{p}_k).$$

The non-increasing condition of the *P*-radius is given by [Le et al., 2013]

$$L_{k+1} \le \beta L_k + \max_{\omega \in \mathbf{B}^n} \|F\omega\|_2^2 + \sigma^2,$$
$$0 < \beta < 1.$$

Prediction step Correction step *P*-radius minimization method



The *P*-radius of the state estimation zonotope at time k is:

$$L_k = \max_{x \in \hat{\mathcal{Z}}_k(\lambda)} \|x - \hat{p}_k\|_P^2 = \max_{x \in \hat{\mathcal{Z}}_k(\lambda)} (x - \hat{p}_k)^\top P(x - \hat{p}_k).$$

The non-increasing condition of the *P*-radius is given by  $\begin{bmatrix} e:13 \\ Le \text{ et al.}, 2013 \end{bmatrix}$ :

$$L_{k+1} \le \beta L_k + \max_{\omega \in \mathbf{B}^n} \|F\omega\|_2^2 + \sigma^2,$$
$$0 < \beta < 1.$$

Prediction step Correction step *P*-radius minimization method

Sufficient condition is to solve the LMI [Le et al., 2013]: Find the smallest value of  $\beta \in (0, 1)$  such that:

 $\max_{\tau, P, Y} \tau$ 

subject to

$$\begin{pmatrix} \frac{(1-\beta)P}{\sigma^{2}+const} \succeq \tau I \\ \begin{bmatrix} \beta P & 0 & 0 & A^{\top}P - A^{\top}cY^{\top} \\ * & F^{\top}F & 0 & F^{\top}P - F^{\top}cY^{\top} \\ * & * & \sigma^{2} & Y^{\top}\sigma \\ * & * & * & P \end{bmatrix} \succeq 0$$

with  $const = \max_{\omega \in \mathbb{B}^n} \|F\omega\|_2^2$  and the decision variables are  $\tau \in \mathbb{R}$ ,  $P \in \mathbb{R}^{n \times n}$ , and  $Y = P\lambda \in \mathbb{R}^n$ .



#### Advantages of the two previous estimation approaches:

- · Good estimation accuracy using the zonotopic estimation method
- Low complexity using the ellipsoidal estimation

#### $\rightarrow$ The idea is to combine these two methods!

**Question**: How to make a transition from the zonotopic estimation to the ellipsoidal estimation?

Ellipsoid related to the *P*-radius of the zonotope  $\hat{Z}_k$ :

$$\mathcal{E}(\hat{p}_k, L_k P^{-1}) = \{x_k \in \mathbb{R}^n : (x_k - \hat{p}_k)^\top (L_k P^{-1})^{-1} (x_k - \hat{p}_k) \leq 1\}.$$



$$L_k o L_\infty = rac{\sigma^2 + const}{1 - eta}$$



Scaling of the ellipsoid related to the *P*-radius of the zonotope  $\hat{Z}_k$ :

$$\mathcal{E}(\hat{p}_k, L_k P^{-1}) = \{ x_k \in \mathbb{R}^n : (x_k - \hat{p}_k)^\top \alpha (L_k P^{-1})^{-1} (x_k - \hat{p}_k) \leq 1 \}.$$

with  $\alpha \in (0, 1)$ .



**Objective**: Obtain the smallest ellipsoid which is the outer bound of the zonotope  $\hat{Z}_k$ ! **Solution**:

 $\max\alpha$ 

subject to

$$\left\{ egin{array}{l} 0 < lpha \leq 1 \ (x_k - \hat{p}_k)^{ op} lpha PL_k^{-1}(x_k - \hat{p}_k) \leq 1, \ orall x_k \in \mathcal{V}_{\hat{\mathcal{Z}}_k}. \end{array} 
ight.$$

with  $\mathcal{V}_{\hat{\mathcal{Z}}_k}$  the vertices of  $\hat{\mathcal{Z}}_k$ .



Algorithm: Combination of the two methods [Ben Chabane et al., 2014]



where I is the length of the horizon of slow variation of the P-radius and  $\epsilon$  the desired level of accuracy of the P-radius

#### Example

Consider the following linear discrete-time invariant system:

$$\begin{cases} x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 0.8 \end{bmatrix} x_k + \begin{bmatrix} -0.24 \\ 0.04 \end{bmatrix} \omega_k \\ y_k = \begin{bmatrix} -2 & 1 \end{bmatrix} x_k + 0.4 v_k \end{cases}$$

with  $\|v_k\|_{\infty} \leq 1$ ,  $\|\omega_k\|_{\infty} \leq 1$ . The initial state belongs to the box  $3\mathbf{B}^2$ .

#### Example



Figure: State space sets

#### Example



Figure: Comparison of the volumes

#### Example



Figure: Bounds of  $x_1$  using the three methods





#### Example

#### Table: Total computation time after 120 time instants

| Algorithm                           | Time(second) |
|-------------------------------------|--------------|
| P-radius based zonotopic estimation | 0.2652       |
| Trace-based ellipsoidal estimation  | 0.0808       |
| Combined method                     | 0.1479       |

#### Conclusion:

- Set-membership estimation based on zonotopes is more accurate than ellipsoidal estimation but with higher complexity
- A new criterion based on the *P*-radius is proposed in order to make a transition from the zonotopic estimation to the ellipsoidal estimation
- The proposed method offers a good trade-off between the accuracy and the complexity

#### Perspectives:

• Apply the proposed method to Fault Detections (FD) and Fault Tolerant Control (FTC) purposes

### THANK YOU FOR YOUR ATTENTION



Ben Chabane, S., Stoica Maniu, C., Alamo, T., Camacho, E. F., and Dumur, D. (2014).

Improved set-membership estimation approach based on zonotopes and ellipsoids.

In European Control Conference, Strasbourg, France.



Combastel, C. (2003). A state bounding observer based on zonotopes. In *Proc. of European Control Conference*, Cambridge, UK.



Durieu, C., Walter, E., and Polyak, B. (2001). Multi-input multi-output ellipsoidal state bounding. Journal of optimization theory and applications, 111(2):273–303.



Fogel, E. and Huang, Y. F. (1982). On the value of information in system identification-bounded noise case. *Automatica*, 18:229–238.

2012

#### Le, V. T. H. (2012).

Commande prédictive robuste par des techniques d'observateurs à base d'ensembles zonotopiques.

Phd thesis, 22 Octobre 2012:Supélec.



Le, V. T. H., Stoica, C., Alamo, T., Camacho, E. F., and Dumur, D. (2013). Zonotopic guaranteed state estimation for uncertain systems. *Automatica*, 49(1):3418–3424.