
bla bla

Positive invariance: definitions, construction and remarkable classes Applications Conclusions

Un tour d’horizon sur l’invariance positive et ses
applications (non seulement) à la commande
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Autonomous dynamics

Positive invariance

Definition

A set X ∈ Rn is positively invariant with respect to the system
δx = f (x (t), u(t),w(t)) if for any x0 ∈ X , the solution x (t , x0)
satisfies x (t , x0) ∈ X for k ∈ N.

This basic definition is applies for both continous and discrete-time
dynamics.
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Autonomous dynamics

Invariance Conditions for Continous time

Basically, in continuous time the invaraince conditions are related
to the cone of the feasible directions on the points on the frontier.
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Autonomous dynamics

Positive invariance

In discrete-time the invariance cannot be verified by analysing the
frontier of the set. In order to obtain geometrical necessary and
sufficient conditions the image of the complete set has to be used.

Definition

A set X ∈ Rn is positively invariant with respect to the system
x (k + 1) = f (x (k)) iff f (X ) ⊂ X .
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Autonomous dynamics

Special Families of Positive Invariant Sets

Ellipsoidal invariant sets.

Related to the existence of
quadratic Lyapunov
functions.
P =

{
x ∈ Rn | xTPx < 1

}
P = PT > 0

Polyhedral invariant sets.

Related to the existence of
polytopic Lyapunov
functions.
P = {x ∈ Rn | Cx ≤W }
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Autonomous dynamics

Relationship between invariance and viability (see J.P.
Aubin)

Evolutions’ viability

x (·) is viable in K on [0,T ] if ∀t ∈ [0,T ] we have x (t) ∈ K

x (·) is not viable in K on [0,T ] if ∃t ∈ [0,T ] for wich
x (t) /∈ K
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Autonomous dynamics

Relationship between invariance and viability (see J.P.
Aubin)

Evolutions’ viability

x (·) is viable in K on [0,T ] if ∀t ∈ [0,T ] we have x (t) ∈ K

x (·) is not viable in K on [0,T ] if ∃t ∈ [0,T ] for wich
x (t) /∈ K

x0 is viable under K for [0,T ] if
∃x0(.) viable

K is locally viable under F if ∀x0 ∈ K and T > 0 there exists a
viable solution on [0,T ] to an evolution starting at x0
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Autonomous dynamics

Relationship between invariance and viability (see J.P.
Aubin)

Evolutions’ viability

x (·) is viable in K on [0,T ] if ∀t ∈ [0,T ] we have x (t) ∈ K

x (·) is not viable in K on [0,T ] if ∃t ∈ [0,T ] for wich
x (t) /∈ K

x0 is invariant under K for
[0,T ] if ∀x0(.) is viable

K is locally invariant under F if ∀x0 ∈ K and T > 0 all solutions
on [0,T ] to an evolution starting at x0 are viable
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Autonomous dynamics

The Maximal Output Admissible Set O∞

Given a discrete-time linear time-invariant system

x (k + 1) = Ax (k), x (0) = x0, x (k) ∈ Rn

y(k) = Cx (k), y(k) ∈ Y =
{
x : Hx ≤ K

}
the maximal admissible (and positive invariant) se is defined as

O∞(A,C ,Y ) =
{
x ∈ Rn : CAtx ∈ Y ,∀t ∈ I+

}
The question is: can O∞ practically be constructed?
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Autonomous dynamics

Finite Determinated O∞ Set

Ot(A,C ,Y ) =
{
x ∈ Rn : CAkx ∈ Y , ∀k = 0 · · · t

}
O∞ = ON for a finite N ?

Theorem (Gilbert and Tan, ’91)

If the following assumptions hold:

1 A is asymptotically stable

2 the pair (C ,A) is observable

3 Y is bounded

4 0 ∈ Int(Y )
then O∞ is finitely determined.

Similar result hold for the polytopic uncertainties on the linear
dynamics (convex difference inclusion).
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Autonomous dynamics

A major result for invariance verification

Theorem (Bitsoris 1988)

The convex polyhedral set:

P = {x ∈ Rn |Fx ≤ w} ,

with F ∈ Rr×n , w ∈ Rr , is an invariant set with respect to

x (k + 1) = Ax (k),

with A ∈ Rn×n , if and only if there exists a matrix H ∈ Rr×r with
nonnegative elements such that:

FA = HF

and
Hw ≤ w .
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Autonomous dynamics

Classical Results Concerning Polyhedral Set Invariance

Definition (Minkowski functions)

Consider a convex and compact polyhedral set containing the
origin:

P = {x ∈ Rn |Fx ≤ 1} ,

with F ∈ Rr×n , w ∈ Rr . The polyhedral function associated to P
is called a Minkowski function:

V (x ) = max
j∈Z[1,r ]

{max {{(Fx )j } , 0}} .

where {(Fx )j } denotes the j th element of Fx . This function can
be seen as a vector infinity-norm (Kiendl et al. 1992):

V (x ) = ‖max {Fx , 0}‖∞ .
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Autonomous dynamics

Classical Results Concerning Polyhedral Set Invariance

Theorem

The Minkowski function of an invaraint set P for a LTI system can
be used as polyhedral Lyapunov candidate (Blanchini, 1995).

Consider ε ∈ R[0,1). One of the statements of the Lyapunov
stability theorem is:

V (x (k + 1))− εV (x (k)) ≤ 0

If ε = 1 the function V (x ) is called a weak Lyapunov function.
The existence of a weak Lyapunov function does not imply global
asymptotic stability but it induces invariant sets (by the ).
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Autonomous dynamics

Other existing results

A link between the eigenstructure and the complexity of the
invaraint set (Molchanov, Bobyleva and Pyatnitskii).

Conditions for the invariance of the complement of a convex
set (related to instability).

Invariant sets for linear dynamics with polytopic uncertainty.

Parameterization of the invariant sets for the reference
tracking case.
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Robust positive invariance

Robust positive invariance

Consider a discrete-time invariant system in Rn affected by
bounded disturbances w(k) ∈W

x (k + 1) = f (x (k),w(k)), with f (0, 0) = 0.

RPI set

Definition (RPI set)

A set S is called Robust Positively Invariant
(RPI) iff ∀x (0) ∈ S and ∀w(k) ∈W then
x (k) ∈ S for k > 0.

Definition (mRPI set)

A set Ω∞ is called minimal Robust Positively
Invariant (mRPI) iff it is a RPI set in Rn

contained in every RPI set of the system.
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Robust positive invariance

Robust positive invariance

Consider a discrete-time invariant system in Rn affected by
bounded disturbances w(k) ∈W

x (k + 1) = f (x (k),w(k)), with f (0, 0) = 0.
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Definition (RPI set)

A set S is called Robust Positively Invariant
(RPI) iff ∀x (0) ∈ S and ∀w(k) ∈W then
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Invariant (mRPI) iff it is a RPI set in Rn

contained in every RPI set of the system.



bla bla

Positive invariance: definitions, construction and remarkable classes Applications Conclusions

Robust positive invariance

Ultimate bounds

Theorem (Ultimate bounds – discrete-time case)

Consider the stable system x+ = Ax + Bw . Let there be the
Jordan decomposition A = VΛV −1 and assume that∣∣∣w(k)

∣∣∣ ≤ w̄ , ∀k ≥ 0. Then there exists l (ε) such that for all k ≥ l :

|V −1x (k)| ≤ (I − |Λ|)−1|V −1B |w̄ + ε

|x (k)| ≤ |V |(I − |Λ|)−1|V −1B |w̄ + |V |ε

Proof (Kofman et al, 2007):
We can write

x
+ = Ax + Bw = VΛV

−1
x + Bw

V
−1

x
+ = ΛV

−1
x + V

−1
Bw

|z+| ≤ |Λz + V
−1

Bw| ≤ |Λ|z + |V −1
B|w̄

and, then:

|V −1
x | ≤ (I − |Λ|)−1|V −1

B|w̄ + ε
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Robust positive invariance
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Robust positive invariance

Exemplification for a R2 case

x (k + 1) = Ax (k) + Bw(k)

where
∣∣∣w(k)

∣∣∣ ≤ 1

A =
[
0.0241 0.4184
−0.7869 1.2759

]

B =
[
0.8462
0.5252

] b =
[
0.90
1.75

]

|V |b =
[
3.70
5.68

]
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Robust positive invariance

mRPI ε inner invariant approximations

The mRPI is not finetly determined : Ω =
i=∞⊕
i=0

Ai∆

The iterative computation of an
inner RPI approximation

Φk+1 = AΦk ⊕∆, Φ0 = {0}

Theorem (Rakovic et al)

For any ε ≥ 0 it exists s ∈ N+ such that

Φs ⊂ Ω ⊂ (1− α(s))−1 Φs (ε)
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Robust positive invariance

mRPI ε outter invariant approximations

The mRPI is not finetly determined : Ω =
i=∞⊕
i=0

Ai∆

The iterative computation of an
outter RPI approximation

Φk+1 = AΦk ⊕∆, Φ0 = Ψ

Theorem (Olaru et al)

For any ε ≥ 0 it exists s ∈ N+ such that

Ω ⊂ Φs ⊂ Ω⊕ Bn
p (ε)
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive
Expansive
Use the Hausdorff distance to analyse the convergence
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Robust positive invariance
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive

Expansive
Use the Hausdorff distance to analyse the convergence

X =

S
nr

i=1
RiX =

S
nr

i=1
Ri

X
0

X
0
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Robust positive invariance
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Robust positive invariance
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Robust positive invariance
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:
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Expansive

Use the Hausdorff distance to analyse the convergence
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive
Expansive

Use the Hausdorff distance to analyse the convergence

X
2

X
2

X
1

X
1

XX



bla bla

Positive invariance: definitions, construction and remarkable classes Applications Conclusions

Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive
Expansive

Use the Hausdorff distance to analyse the convergence
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Robust positive invariance

The construction of robust invaraint sets for nonlinear case

The idea for nonlinear dynamics in general

Work with inner-outer approximation in parallel

Approach:

Contractive
Expansive
Use the Hausdorff distance to analyse the convergence
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Controlled invariance

Controlled invariance

Definition

A set X ∈ Rn is controlled positively invariant with respect to the
dynamical system x+ = f (x (t), u(t)) if for any x0 ∈ X , there
exists a control sequence u(t), ∀t ≥ 0 such that the solution x (t)
satisfies x (t) ∈ X for all k ∈ N.

Definition

A set X ∈ Rn is robust controlled positively invariant with respect
to the dynamical system x+ = f (x (t), u(t),w(t)) if for any
x0 ∈ X , there exists a control sequence u(t), ∀t ≥ 0 such that the
solution x (t) satisfies x (t) ∈ X for all k ∈ N, ∀w(t) ∈W where
W is the set of admissible disturbances.
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Controlled invariance

Controlled invariance - remarks and construction

Different formulations with respect to the information
available for control (analogy with the game theoretic
approaches)

The controlled invariance will be a useful concept in view of
the control design (see MPC, vertex control, etc.)

Closely related to the reachability analysis and the dynamic
programming
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Controlled invariance

Controlled invariance - remarks and construction

For the constraction of the controlled invaraint sets the main idea
will be to use the reachability analysis with the backward set
dynamics as a main tool.

For LTI dynamics x+ = Ax + Bu in presence of state
(xt ∈ X ) and input (ut ∈ U ) constraints if functioning well
via set iterates. For example in the discrete-time this leads to:

Sk = (A−1Sk−1 ⊕A−1B(−U )) ∩X (1)

The finite determination of the maximal controlled invariant
set is not guaranteed as long as this might not be a closed set.
However a ε- approximation can be obtained.

For the construction of robust controlled invariant sets the set
iteration needs to use the Pontryagyn difference. A special
attention should be given to this operation as long as this is
not representing the inverse of the Minkowski sum.
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Relaxed invariance notions

Alternative invariance notions

Definition (Periodic invariance - Lee and Kouvaritakis)

The set Ω ⊂ Rn containing the origin is called periodic invariant with respect to the
system x+ = f (x) if there exists a positive number p ∈ Z+ such that for any xk ∈ Ω
it holds that xk+p ∈ Ω.

Definition (Cyclic invariance - Lombardi et al)

The ordered family of sets containing the origin O = {Ω1, . . . ,Ωp} ⊆ {Rn}p is called
cyclic invariant with respect to x+ = f (x) if for any xk ∈ Ωi , i ∈ Z[1,p] it holds that
xk+p ∈ Ωi and xk+j ∈ Ω

i+j−
⌊

i+j
p

⌋
p

for j ∈ Z[1,p−1].

Definition (Invariant family of sets - Rakovic et al)

The family of sets containing the origin O = {Ω1, . . . ,Ωr} ⊆ {Rn}r with r ∈ Z+ is
called invariant with respect to x+ = f (x) if for any xk ∈ Ωi , i ∈ Z[1,p] it holds that

xk+p ∈ Ωi and xk+l ∈
⋃r

j=1
Ωj for l ∈ Z[1,p−1].
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Constrained Control

Vertex control based on a controlled invariant set

Gutman and Cwikel (1986)

The necessary and sufficient condition for stabilizing a linear
discrete time system with polyhedral state and control
constraints is that at each vertex of the feasible set PN there
exists a feasible control signal u ∈ U that brings the state to
int(PN ).
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Constrained Control

Vertex control based on a controlled invariant set

A stabilizing controller is given by the convex combination of
vertex controls. There exists a polyhedral Lyapunov function given
by shrunken images of PN .

Blanchini (1992) extended to the uncertain plant case.

The extension to the nonlinear homogenous dynamics is
possible as long as a convex (polyhedral) controlled invariant
set exists.
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Model Predictive Control

The MPC design

Consider the discrete-time system:

xk+1 = g(xk , uk ) (2)

where g(0, 0) = 0, uk ∈ U and xk ∈ X with U and X a convex,
compact subsets of Rm and Rn respectively containing the origin
in their interiors. Consider also the optimization problem

min
uk ,...,uk+N−1

k+N−1∑
i=k

l(xi , ui) + T (xk+N )

xi+1 = g(xi , ui),∀i ∈ Z[k ,k+N−1]
xi ∈ X , ui ∈ U , xk+N ∈ Ω

(3) MPC

The set Ω ∈ Rn contains the origin in the interior and represents
the terminal constraint.
A predictive control applies the first component of the optimal
sequence umpc = u∗k and restarts the optimization.
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Model Predictive Control

The classical MPC stability proof relies on invariance

The next results underlines the importance of the positive
invariance for the stability of the resulting closed-loop system.

Theorem

If there exists a function K : Ω→ U such that:

1 g(x ,K(x )) ∈ Ω, ∀x ∈ Ω (controlled positive invariance of Ω)

2 T (g(x ,K(x ))) + l(x ,K(x ))− T (x ) ≤ 0 (local Lyapunov
function)

then the control law umpc obtained by solving the receding horizon
optimization (

MPCMPC
3) guarantees the asymptotic stability of the

resulting closed-loop system xk+1 = g(xk , umpc(xk )).
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Interpolation based control

Interpolation based control - Nguyen et al

Let x+ = Ax + Bu in presence of input and state constraints.
Given PN a controlled invariant set and Ω the MOAS for
x+ = (A + BK )x then ∀x ∈ PN can be rewritten as a convex
combination x = cxv + (1− c)xo with xv ∈ PN , xo ∈ Ω

Theorem

u = cuv + (1− c)uo is recursively
feasible for all x ∈ PN .

Theorem

c∗(x ) = min(c) is a positive and
non-increasing Lyapunov function
for the system in closed loop with
uinterp = c∗uv + (1− c∗)uo .
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Interpolation based control

Interpolation based control - Nguyen et al

Low complexity for the control based on optimization

Similar performances with MPC

Attractive explicit solution
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Fault detection and isolation

Multisensor fault detection usign invariant sets

see the results of Seron, De Dona, Stoican and Olaru
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Fault detection and isolation

Multisensor control of the inter-vehicle distance
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Collision avoidance
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Collision avoidance

Invariant sets for collision avoidance (Prodan et al)

Consider an agent described by

Ai =


0 0 1 0
0 0 0 1
0 0 − µi

mi
0

0 0 0 − µi
mi

 , Bi =


0 0
0 0
1
mi

0

0 1
mi

 ,
modeling the pedestrian flow, with xi(k) = [pTi (k) vTi (k)]T .

Potential field constructed based
on the approximation of mRPIs

Agent governed by MPC with
collision avoidance constraints
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Collision avoidance

Other control application

Reference tracking (reference governor design)

Hybrid system modeling/design

Probabilistic analysis: prababilistic invariant sets (DeDona et
al 2013)

Decentralized control: via invariant families of sets

Delay independent stability results

...
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Conclusions

The invariant sets are useful in the analysis and the design of
control!

Much is to be done from the construction point of view.
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Thanks to F. Stoican and I. Prodan for the artwork and some of
the slides used in this presentation.
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