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“To be or not to be ?” (Hamlet, Shakespeare, 1601)

“analysis and control of dynamical systems with conflicting objectives”

Mixed-integer optimization problems for which part or all of the arguments are required to be integers.
NP-hard in general, but can also solve many large problems in practice

Mixed-integer representations
in control design
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Brief history
“50 Years of Integer Programming 1958-2008 : From the Early Years to the State-of-the-art”,

Jünger et al. [2009]

Mathematicians have started first to analyze problems with integer variables (early 1820’s).
Fourier [1826], Minkowski [1896], Dantzig [1951], Fulkerson [1954], Hoffman and Kruskal [1956], Gomory
et al. [1958], Edmonds [1965], Garey and Johnson [1979], Khachiyan [1979], Karmarkar [1984]

In the 90’s MIP/MILP becomes a widely explored approach for chemical process scheduling problems.
Pritsker et al. [1969], Sahinidis and Grossmann [1991]

The availability of computing power increased the interest in optimization problems which can be formulated
through the use of MI techniques (early 2000).
Earl and D’Andrea [2001], Richards et al. [2002], Schumacher et al. [2003]
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Hyperplane arrangements notions

Half-spaces and polytopic sets

Let there be a collection of hyperplanes

Hi =
{

x : hi x = ki , (hi ,ki ) ∈ R1×n×R
}

which partition the space in regions

R+(Hi ) = {x : hi x ≤ ki}
R−(Hi ) = {x : −hi x ≤−ki}

describing a bounded polyhedral set
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S =
⋂

i

R+(Hi ), i = 1 : N

The complement of P is defined as

C(S) , cl(Rn \P) =
⋃

i

R−(Hi ), i = 1 : N
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Hyperplane arrangements notions

Hyperplane arrangement decomposition

The collection of hyperplanes H partitions Rn into a union of disjoint cells A(σ ) characterized by
the sign tuple σ ∈ {−,+}N :

A(σ ) =
⋂

i∈I
Rσ (i)

i .

The feasible sign tuples describe a hyperplane
arrangement of cells covering the entire space :

A(H) =
⋃

σl∈∑ N

A(σl ).

− +

−
+

− +

+
−

+ −

−
+

− +

−+

− +

A(+ + + +− + + + +)

A(+ + + +− + + +−)

A(+ +− + + + + + +)

where ∑N ⊂ {−,+}N denotes the collection of combinations of regions R+
i , R−i resulting into

non-empty cells (Buck’s formula gives γ(N)≤
n
∑
i=0

(N
i

)
as an upper bound Buck [1943]).
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Hyperplane arrangements notions

Description of the feasible region – I

Describe the feasible region (Rn \S) by dividing the existing cells (σ ∈ ∑N ) into :

forbidden (they describe S) :

σ ∈ ¯
∑N

feasible (they describe Rn \S) :

σ ∈∑N \ ¯
∑N

S1 S2

− +

−
+

− +

+
−

+ −

−
+

− +

−+

− +

A(+ + + +− + + + +)

A(+ + + +− + + +−)

A(+ +− + + + + + +)

Then the feasible region can be defined as the union of feasible cells :

Rn \S =
⋃

σl∈∑ N\∑̄N

A(σl ).
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Hyperplane arrangements notions

Description of the feasible region – II

Feasible cells can be concatenated into “merged” cells (through merging procedures, e.g.,
Karnaugh maps, Espresso minimizer Geyer et al. [2008], Prodan et al. [2012a])

A(σ∗) =
⋃

σ ,





σ (i) = σ∗(i), σ∗(i) 6=′ ∗′
σ (i) ∈ {−,+}, σ∗(i) =′ ∗′

A(σ )

=
⋂

σ∗(i)6=′∗′, i∈I
Rσ∗(i)

i

where σ∗ ∈ {−,∗,+}N denotes the sign tuple
associated with the merged cell.

S1 S2

A(+ ∗ + ∗ − ∗ + + ∗)

Then the feasible region can be defined as the union of feasible merged cells :

Rn \S =
⋃

σ∗
A(σ∗).
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Mixed-integer representations Classical MIP representation

Classical MIP representation

Define an extended linear representation of C(P)

−hi x ≤−ki + Mαi , i = 1 : N

i=N

∑
i=1

αi ≤ N−1

where (α1, . . . ,αN ) ∈ {0,1} N
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Any of the regions R−(Hi ) of C(P) can be obtained by a suitable choice of binary variables

R−(Hi )←→ (α1, . . . ,αN )i , (1, . . . ,1, 0︸︷︷︸
i

,1, . . . ,1)
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Mixed-integer representations Logarithmic MIP representation

Logarithmic representation

For each region R−(Hi ) a unique combination of binary variables λ i ∈ {0,1}dlog2Ne is
associated. Then, the affine functions αi : {0,1}dlog2Ne→{0}∪ [1,∞) are constructed :

αi (λ ) =
dlog2Ne

∑
k=0

(
λ

i
k + (1−2λ

i
k ) ·λk

)
.

λk denotes the k th component of λ and λ i
k its value for the tuple associated to region R−(Hi ) :

αi (λ ) =

{
0, only if λ = λ i

≥ 1, for any λ 6= λ i

which leads to the compact formulation

−hi x ≤−ki + Mαi (λ ), i = 1 : N ,

0≤ βl (λ ).
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Mixed-integer representations Logarithmic MIP representation

Interdicted tuples

In the mixed-integer representation we interdict tuples which describe the obstacle :

in the classical formulation we force that at least one
constraint is active :

i=N

∑
i=1

αi ≤ N−1

in the logarithmic formulation
I multiple constraints to interdict tuples Prodan et al. [2012a]

0 < βl (λ )

I if the allocated tuples are ordered a single constraint
suffices Afonso and Galvão [2013]

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

Ionela PRODAN, Florin STOICAN Mixed-Integer Programming in Control Design June 11, 2015 7 / 29



Mixed-integer representations Logarithmic MIP representation

Illustrative example

Consider a polytope P ⊂ R2 given by



−1 0
1 0
0 −1
0 1


x ≤




1
1
1
1
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In the reduced representation only N0 = dlog2 4e = 2 binary variables are needed.

For region R−(H2) associate tuple (λ 2
1 ,λ

2
2 ) = (0,1) which leads to the mapping

α2 = 1 + λ1−λ2
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Mixed-integer representations Logarithmic MIP representation

Illustrative example
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Mixed-integer representations Logarithmic MIP representation

Illustrative example
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Mixed-integer representations MIP for hyperplane arrangements

MIP for hyperplane arrangements – I

Reminder :

hyperplane arrangement :

A(H) =
⋃

σl∈∑ N

A(σl ).

interdicted and feasible tuples :

¯
∑N = {σ : A(σ )⊆ S}

∑N \ ¯
∑N = {σ : A(σ )∩S = /0}

S1 S2

− +

−
+

− +

+
−

+ −

−
+

− +

−+

− +

A(+ + + +− + + + +)

A(+ + + +− + + +−)

A(+ +− + + + + + +)

There are several possible formulations of the feasible region :

by making at least a constraint from each obstacle active

as union of feasible (merged) cells

explicitly forbid the cells describing obstacles
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Mixed-integer representations MIP for hyperplane arrangements

MIP for hyperplane arrangements – II

by making at least a constraint from
each obstacle active :

C(S) =
⋂

l

C (Sl )

as union of feasible (merged) cells :

C(S) =
⋃

j∈J
A(σ∗j )

explicitly forbid the cells describing
obstacles (σl ∈ ∑̄N )

Characteristics :

. . .

−hil x ≤−kil + Mαil , ∀il ∈ Il

∑
il∈Il

αil ≤ #Il −1

. . .

h1x = k1 −
+

h2x = k2

− +

h3x = k3

−
+

h6x = k6

−
+

h5x = k5

− +

h4x = k4+
−

S1

S2

the number of binary variables depends on the complexity of the obstacles

efficient in the logarithmic formulation
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Mixed-integer representations MIP for hyperplane arrangements

MIP for hyperplane arrangements – II

by making at least a constraint from
each obstacle active :

C(S) =
⋂

l

C (Sl )

as union of feasible (merged) cells :

C(S) =
⋃

j∈J
A(σ∗j )

explicitly forbid the cells describing
obstacles (σl ∈ ∑̄N )

Characteristics :

−hjl x ≤−kjl + Mαj , ∀jl s.t.σ∗j (jl ) 6= ‘∗′ ,
∑
j

αj ≤ #J −1.

h1x = k1

h2x = k2
h3x = k3

h6x = k6 h5x = k5

h4x = k4

S1

S2R−3 ∩R−5

the number of binary variables depends on the complexity of Rn \S
efficient when using merged cells and logarithmic formulation

difficult to compute the feasible cells and merge them
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Mixed-integer representations MIP for hyperplane arrangements

MIP for hyperplane arrangements – II

by making at least a constraint from
each obstacle active :

C(S) =
⋂

l

C (Sl )

as union of feasible (merged) cells :

C(S) =
⋃

j∈J
A(σ∗j )

explicitly forbid the cells describing
obstacles ( σl ∈ ∑S )

Characteristics :

hi x ≤ ki + M(1−αi ), i ∈ I
−hi x ≤−ki + Mαi

∑
σl (i)=′+′

(1−αi ) + ∑
σl (i)=′−′

αi > 0, ∀σl ∈ ∑P

h1x = k1 −
+

h2x = k2

− +

h3x = k3

−
+

h6x = k6

−
+

h5x = k5

− +

h4x = k4+
−

S1

S2

A(+ + + +−−)

A(+ + + +−+) A(+ +− + ++)

the number of binary variables does not depend on the number of forbidden cells
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Mixed-integer representations MIP for hyperplane arrangements

Numerical aspects
For a hyperplane arrangement we associate a truth table :

‘0’ for forbidden tuples
‘1’ for tuples describing part of the feasible domain
‘∗’ for tuples which result in empty cells

+-

-
+

+ -

+
-

H1 H2

H3

H4

B1 → (−,−,−,−)
B2 → (−,−,−,+)B3 → (−,−,+,−)B4 → (−,−,+,+)

B5 → (−,+,−,−)

B6 → (−,+,−,+)

B7 → (−,+,+,−)

B8 → (−,+,+,+)

B9 → (+,−,−,+)

S1

S2

P1 = R+
1 ∩R+

2 ∩R+
3

P2 = R−1 ∩R−2 ∩R+
4

h1, h2

h3, h4

- - - + + + + -

- -

- +

+ +

+ -

B1

B2B3B4

B5

B6B7 B8

B9P1P2

∗

∗

∗ ∗

∗

The resulting Boolean function (written as sum-of-products) describes the feasible cells of the
hyperplane arrangements :

the canonic form leads to merged cells
the greatest time is spent finding the feasible tuples⇒ don’t look for them

I merge in the truth table all the cells which are not explicitly forbidden
I discard the combinations which have no geometrical meaning

⇒
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Mixed-integer representations MIP for hyperplane arrangements

Caveat emptor

We use hyperplane arrangements in order to reduce the complexity of the non-convex
representation.

Nonetheless, this pre-processing can be difficult itself :
computation of the hyperplane arrangement increases exponentially with space dimension
and number of hyperplanes Avis and Fukuda [1996]

computing merged cells is relatively easy (the union of two cells which differ through a
single bit is always convex) Geyer et al. [2008]

we can use sub-optimal strategies
I heuristic Boolean minimizer (the Espresso solver)
I write conservatively the truth-table Stoican et al. [2013]
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Applications for the control of multi-agent dynamical systems

Aircraft formation

Blake and Multhopp [1998]
Richards and How [2002]

Astronomical observations

Massion et al. [2008]
Mora and Solar [2010]

Mobile Offshore Base

Sousa et al. [2000]
Girard et al. [2005]

Model Predictive Control (MPC)
Propoi [1963], Richalet et al. [1978], Cutler and Ramaker [1980]

model of the system reference trajectory

arg
u

min Vf(x(k + Np), q(k + Np)) +
Np−1∑
s=1

Vn(x(k + s), u(k + s), q(k + s))

subject to:

{
x(k + s + 1) = f(x(k + s), u(k + s)), s = 0 : Np − 1,

h(x(k + s), u(k + s), q(k + s)) ≤ 0, s = 1 : Np − 1.

constraint sets
representation optimization solver



Applications Obstacle avoidance

Obstacle avoidance problems

(Prodan et al., Springer’11)

Consider 4 obstacles and a single agent defined by a LTI dynamics.

14 hyperplanes ;

106 regions obtained with hyperplane
arrangements ;

10 cells describing the forbidden regions ;

96 cells describing the feasible region ;

N0 = 4 the number of the binary variables ;

apply an MPC optimization problem
(Np = 3, Q = 105 · I4, R = I2, P = 105 · I4). −10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x 2

Conclusion : 72% complexity reduction of binary variables.
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Applications Area coverage

The corner cutting problem

Stoican, Grotli, Prodan, 2015

One challenging and not extensively studied issue in obstacle avoidance is the corner cutting
problem.

Avoidance constraints are usually imposed at the sampling time without regards to the
intra-sample behavior of the dynamics.

Current results Richards and Turnbull [2015], Maia and Galvão
[2009], Deits and Tedrake [2015] are

conservative in their description

do not treat efficiently the case of multiple obstacles

Main ideas :

the future position should not lie in the shadow of the
obstacle(s)

consider exact and approximate descriptions
2 2.5 3 3.5 4 4.5 5 5.5 6
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Applications Area coverage

Shadow region description
We can define the “shadow” region B(S,x) as the collection of all the points from Rn which are
“in the shadow” from the point of view of x :

B(S,x) = {y : [x ,y ]∩S 6= /0}

S is the obstacle

x is the sensor/agent
S

x

B(S,x)

If the segment [x ,y ] intersects S it means that point y is “hidden” by obstacle S and therefore is
not “visible” from the point of view of x .
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Applications Area coverage

Shadow region description
We can define the “shadow” region B(S,X) as the collection of all the points from Rn which are
“in the shadow” from the point of view of X :

B(S,X) =
Na⋂
k=1

B(S,xk ) =
Na⋂
k=1

[(
No⋃
l=1

B(Sl ,xk )

)]

=
Na⋂
k=1

(
No⋃
l=1

B(Sl ,xk )

)

S,
No⋃
l=1

Sl is the collection of obstacles

X, {x1, . . . ,xNa} is the collection of
sensors/agents

S1 S2

x1

x2

B(S,X)

If the segment [x ,y ] intersects S it means that point y is “hidden” by obstacle S ∈ S and
therefore is not “visible” from the point of view of x ∈ X.
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Applications Area coverage

Shadow area construction

Let there be S = A(σ•) where σ• ∈ ∑
•, then we define the auxiliary set

E(σ•,x) =A(σ•)∩


 ⋃

x /∈Hσ• (i)
i

Hi


∩


 ⋃

x∈Hσ• (i)
i

Hi




− +

H
1

−
+

H2

−
+

H 3

−
+

H
4

−+

H
5

S1

A(−− + + +)

S2

A(+−− + +)

which denotes the tangent points of S from the viewpoint of x .

For any x ∈A(σ◦) we have that E(σ•,x) remains fixed :

E(σ•,σ◦) = A(σ•)∩


 ⋃

σ ◦(i)6=σ •(i)

Hi


∩

(
⋃

σ ◦(i)=σ •(i)

Hi

)

E(σ•,x) is parametrized after σ◦ ∈ ∑
◦ ⇒ it remains constant with respect to σ◦ !
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Applications Area coverage

Illustrative example

For dynamics xk+1 = Axk + Buk we impose that xk+1 /∈ ⋃
σ •∈∑ •

B(σ•,σk )

u∗ =arg min
uk+i ,σk+i

Np−1

∑
i=0
‖xk+i+1‖Q +‖uk‖R

s.t.xk+i+1 = Axk+i + Buk+i

xk+i ∈ X , uk+i ∈ U

xk+i+1 /∈
⋃

σ •∈∑ •
B(σ•,σk+i ), ∀i
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x

y

State trajectories

with corner cutting constraints
without corner cutting constraints
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Applications Area coverage

A word about the coverage problem

In this talk the shadow region has been used to characterize the (in)feasible future position of an
agent.
Alternatively we can use the the region to characterize the area under shadow

S1 S2

p1

S1 S2
p2 S1 S2

p3

and use it for

static approach : multiple agents shuffle their positions until they minimize (cancel) the
unobserved space

dynamic approach : successive points are taken such that an agent passing through them
minimizes (cancels) the unobserved space – the agent dynamic has to be considered

a combination of the previous approaches
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Applications Formation control

Centralized/Distributed/Decentralized MPC for formation control
Two-stage procedure :

Solve the task assignment problem (re-evaluated at each time step)

Solve the mixed-integer optimization problem :

u∗I = arg min
uI (k ),...,uI (k+Np−1)

Vn(xI (k ),uI (k ), . . . ,uI (k + Np−1))

subject to :

{
xI (k + s + 1) = AIxI (k + s) + BIuI (k + s), s = 0 : Np−1,

xI (k + s) ∈ C(S), s = 1 : Np,

where the cost function is minimized in the target positions.

4 homogeneous agents
minimal configuration - “off-line”
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x
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agents motion - “on-line”
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Applications Formation control

MIP-based solution for trajectory tracking of multi-agent formation

(Prodan et al., IFAC World Congress’11, Springer’13)

Centralized predictive control with non-convex
state constraints

Decentralized predictive control with non-convex
state constraints
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Applications Other MIP applications

FDI adjusted reference governor

Stoican and Olaru, Wiley, 2013

Fix z (z ∈ Sz ) and let xref be the decision variable :

Dxref ,
{

xref :
(
{−Ci xref }⊕NF

i
)
∩ (Ci Sz ⊕Ni ) = /0, i = 1 . . .N

}
.

Reference governor (Stoican et al. [2010]) :

u∗ref [0,τ−1] = argmin
uref [0,τ−1]

τ−1

∑
i=0

(
||r[i ]− xref [i ]||Qr + ||uref [i ]||Rr

)

subject to :

x+
ref [i ] = Axref [i ] + Buref [i ]

x+
ref [i ] ∈ Dxref

Characteristics :

fix gain

flexible reference

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12
−12
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x 2

r
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Applications Other MIP applications

Dynamic models of the microgrid components

(Prodan and Zio, Int. Journal of Electrical Power and Energy Systems, 2014)
Consider the dynamic model of the electrical storage units Sj :

xj (t + 1) = (1−σj )xj (t) + ∑
Mgs (i,j)6=0

uij
gs(t)− ∑

Msd (i,j)6=0
ujk

sd (t)− ∑
Mse(j,k )6=0

uj
se(t) + wj (t),

with the mixed-integer conditions :




0≤ uij
gs(t)≤Mαj (t), ∀i with Mgs(i, j) 6= 0,

0≤ ujk
sd (t)≤M(1−αj (t)), ∀k with Msd (j,k ) 6= 0,

0≤ uj
se(t)≤M(1−αj (t)), if ∃j with Mse(j) 6= 0,

- xj (t) ∈ R represents the amount of energy
stored in Sj at time step t ;

- αj (t) ∈ {0,1} are the auxiliary binary
variables which govern the mode
switching ;

- σj ∈ R+ hourly self-discharge decay ;

- Mab adjacency matrix characterizing the
links between components.

Consumers

D1

D2

D3 Dk

S1

S2

S3Sj

Storages

G1

G2

G3Gi

Generators

External grid

uij
gs(t)

uik
gd(t)

ujk
sd(t)

ui
ge(t)

uk
ed(t)

uj
se(t)Microgrid

e(t)
electricity price profile

dk(t)
consumer demand
profile:
- essential dk

es(t)

- non-essential dk
nes(t)

gi(t)
generator power profile

Transformer
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Conclusions

Conclusions
Develop and bring to light new insights in the use of mixed-integer (MI) formulations for
efficiently describing non-convex and non-connected regions appearing in a wide range of
applications in control theory.
Once the overall problem is brought to an improved formulation specialized solvers like
CPLEX, Gurobi or SCIP are employed.
Mixed-integer formulations provide one of the best ways of dealing with optimization
problems with conflicting objectives.

Mixed-integer representations
in control design

Polytopic set Zonotopic set
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Conclusions

Research interactions

Work done together with

Sorin Olaru, Silviu Niculescu (L2S, CentraleSupélec)

Morten Hovd (NTNU), Esten Grotli (SINTEF)

Mircea Strutu, Dan Popescu (UPB)

Enrico Zio (Chair EDF, CentraleSupélec)

hyperplane arrangement
for nonconvex regions

ACC’11, CDC’11, JOTA
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description
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coverage problem
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corner cutting
problem

NMPC’15 (submitted), IJRNC (in work)

collision and ob-
stacle avoidance
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fault detection
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Conclusions

Illustrative example

Consider a triangle from R2 given by

h1x ≤ k1
h2x ≤ k2
h3x ≤ k3

in the MI formulation.

h1x = k1

h2x = k2

h3x = k3

S

In the reduced representation only N0 = dlog2 3e = 2 binary variables are needed.

For region R−(H2) associate tuple (λ 2
1 ,λ

2
2 ) = (1,0) which leads to the mapping

α2(λ ) = 1−λ1 + λ2
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Illustrative example

and its complement

−h1x ≤−k1 + Mα1
−h2x ≤−k2 + Mα2
−h3x ≤−k3 + Mα3

in the classical MI formulation.

h1x = k1

h2x = k2

h3x = k3

(α1, α2, α3) ← (0, 1, 1)

(α1, α2, α3) ← (1, 1, 0)
(α1, α2, α3) ← (1, 0, 1)

R−2
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h1x = k1

h2x = k2

h3x = k3

(λ1, λ2) ← (0, 0)

(λ1, λ2) ← (1, 0)
(λ1, λ2) ← (0, 1)

R−2

S

In the reduced representation only N0 = dlog2 3e = 2 binary variables are needed.
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