TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

Nicolas Perrin

perrin@isir.upmc.fr (Joint work with Ph. Schlehuber-Caissier, N. Markey & P. Bouyer-Decitre)

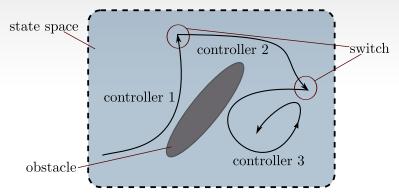
ISIR (UPMC & CNRS), Paris

June 11th, 2015

GENERAL PROBLEM AND OBJECTIVE

General problem

• A controlled dynamical system ($\dot{x} = f(x, u, t)$) with a fixed finite set of controllers.



• Objective : create an abstraction and use formal methods for control design.

CONTROL FUNNELS

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$$

A control funnel or funnel is a trajectory $\mathcal{F}(t)$ of **sets in the state space** such that, for any trajectory $\mathbf{x}(t)$ of the dynamical system :

$$\forall t_0 \in \mathbb{R}, \ \mathbf{x}(t_0) \in \mathcal{F}(t_0) \Rightarrow \forall t \ge t_0, \ \mathbf{x}(t) \in \mathcal{F}(t)$$

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$$

For a continuously differentiable function V(x, t), we define $\Omega_t = \{x | V(x, t) \le 1\}.$

If for any $t \in \mathbb{R}$, and any $x \in \Omega_t$, $\frac{d}{dt}(V(x(t), t)) < 0$, i.e. :

$$\frac{\partial V}{\partial x}(x,t)f(x,t) + \frac{\partial V}{\partial t}(x,t) < 0,$$

then the function $\mathcal{F}(t) = \Omega_t$ is a funnel : for any $t_0 \in \mathbb{R}$,

$$\mathbf{x}(t_0) \in \Omega_{t_0} \Rightarrow \forall t \ge t_0, \ \mathbf{x}(t) \in \Omega_t.$$

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$$

For a continuously differentiable function $V(\mathbf{x}, t)$, we define $\Omega_t = {\mathbf{x} | V(\mathbf{x}, t) \le 1}.$

If for any $t \in \mathbb{R}$, and any $x \in \Omega_t$, $\frac{d}{dt}(V(x(t), t)) < 0$, i.e. :

$$\frac{\partial V}{\partial x}(x,t)f(x,t) + \frac{\partial V}{\partial t}(x,t) < 0,$$

then the function $\mathcal{F}(t) = \Omega_t$ is a funnel : for any $t_0 \in \mathbb{R}$,

$$\mathbf{x}(t_0) \in \Omega_{t_0} \Rightarrow \forall t \ge t_0, \ \mathbf{x}(t) \in \Omega_t.$$

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$$

For a continuously differentiable function $V(\mathbf{x}, t)$, we define $\Omega_t = {\mathbf{x} | V(\mathbf{x}, t) \le 1}.$

If for any $t \in \mathbb{R}$, and any $\mathbf{x} \in \Omega_t$, $\frac{d}{dt}(V(\mathbf{x}(t), t)) < 0$, i.e. :

$$\frac{\partial V}{\partial \mathbf{x}}(\mathbf{x},t)f(\mathbf{x},t) + \frac{\partial V}{\partial t}(\mathbf{x},t) < 0,$$

then the function $\mathcal{F}(t) = \Omega_t$ is a funnel : for any $t_0 \in \mathbb{R}$,

$$\mathbf{x}(t_0) \in \Omega_{t_0} \Rightarrow \forall t \ge t_0, \ \mathbf{x}(t) \in \Omega_t.$$

$$\dot{x} = x_{target} - x$$

For any set $W \subset \mathbb{R}^d$, the function $\mathcal{F}(t) = \{x_{target} + \exp(-t)w \mid w \in W\}$ is a funnel.

Indeed, if $x(t_0) = x_{target} + \exp(-t_0)w$, then for $t \ge t_0$,

$$\begin{aligned} \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t + t_0)(\boldsymbol{x}(t_0) - \boldsymbol{x}_{target}), \\ \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t)\boldsymbol{w}, \\ &\text{and thus } \boldsymbol{x}(t) \in \mathcal{F}(t). \end{aligned}$$

TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

$$\dot{x} = x_{target} - x$$

For any set $W \subset \mathbb{R}^d$, the function $\mathcal{F}(t) = \{x_{target} + \exp(-t)w \mid w \in W\}$ is a funnel.

Indeed, if $x(t_0) = x_{target} + \exp(-t_0)w$, then for $t \ge t_0$,

$$\begin{aligned} \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t + t_0)(\boldsymbol{x}(t_0) - \boldsymbol{x}_{target}), \\ \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t)\boldsymbol{w}, \\ &\text{and thus } \boldsymbol{x}(t) \in \mathcal{F}(t). \end{aligned}$$

$$\dot{x} = x_{target} - x$$

For any set $W \subset \mathbb{R}^d$, the function $\mathcal{F}(t) = \{ \mathbf{x}_{target} + \exp(-t)\mathbf{w} \mid \mathbf{w} \in W \}$ is a funnel.

Indeed, if $\mathbf{x}(t_0) = \mathbf{x}_{target} + \exp(-t_0)\mathbf{w}$, then for $t \ge t_0$,

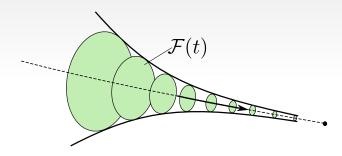
$$\begin{aligned} \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t + t_0)(\boldsymbol{x}(t_0) - \boldsymbol{x}_{target}), \\ \boldsymbol{x}(t) &= \boldsymbol{x}_{target} + \exp(-t)\boldsymbol{w}, \\ \text{and thus } \boldsymbol{x}(t) \in \mathcal{F}(t). \end{aligned}$$

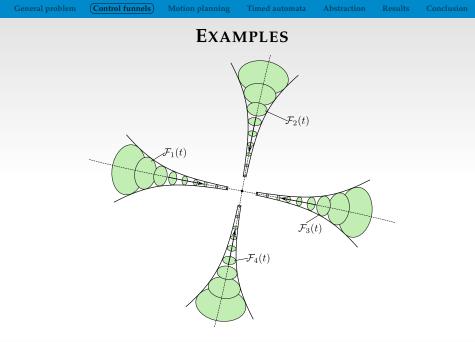
Timed automa

Abstraction

Results

EXAMPLES



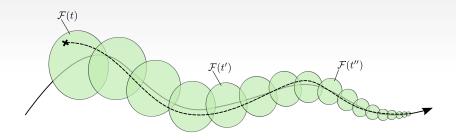


Timed automa

Abstraction

Results Co

EXAMPLES



TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNEI

imed automat

ata Abstra

on Results

Conclusior

MOTION PLANNING WITH FUNNELS

[Mason 1985], [Burridge et al. 1999], [Tedrake 2009]

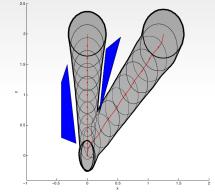
imed automat

ata Abstra

n Results

Conclusion

MOTION PLANNING WITH FUNNELS



[Tobenkin, Manchester & Tedrake 2014]

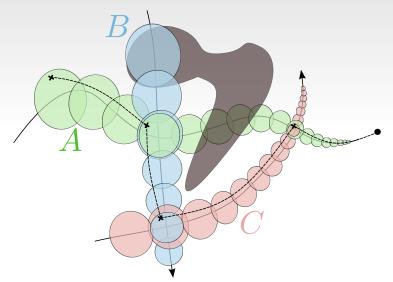
TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNEI

nata Abstr

tion Results

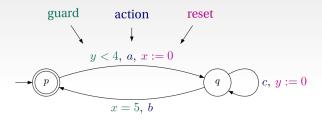
Conclusion

MOTION PLANNING WITH FUNNELS



General problem Control funnels Motion planning Timed automata Abstraction Results Conclusion
TIMED AUTOMATA [ALUR & DILL 1994]

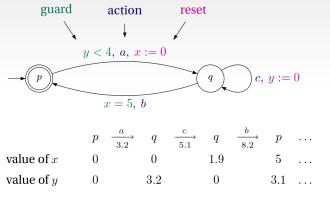
x, y: clocks



TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

TIMED AUTOMATA [ALUR & DILL 1994]

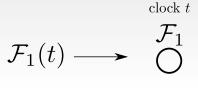
x, y: clocks



→ timed word (a, 3.2)(c, 5.1)(b, 8.2)...

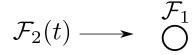
- Reachability in timed automata is PSPACE-complete. Some implementations are efficient in practice (e.g. UPPAAL).
- Reachability and safety games on timed automata are decidable and EXPTIME-complete (and memoryless strategies are sufficient).

Abstraction of control funnels with TIMED AUTOMATA



 $\operatorname{clock} t$

Abstraction



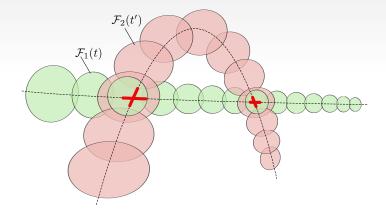
• Transitions : $\mathcal{F}_1(t) \to \mathcal{F}_2(t')$?

(Abstract

Results Conclusion

ABSTRACTION OF CONTROL FUNNELS

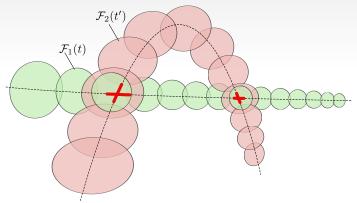
$$(a' < t' < b' \land a < t < b) \lor (c' < t' < d' \land c < t < d)$$



Abstract

ABSTRACTION OF CONTROL FUNNELS

$$\begin{aligned} (\mathbf{t}' = \mathbf{a}' + \frac{\mathbf{k}}{\mathbf{N}} (\mathbf{b}' - \mathbf{a}') \wedge a < t < b) ... \\ \vee (\mathbf{t}' = \mathbf{c}' + \frac{\mathbf{q}}{\mathbf{N}} (\mathbf{d}' - \mathbf{c}') \wedge c < t < d) \end{aligned}$$

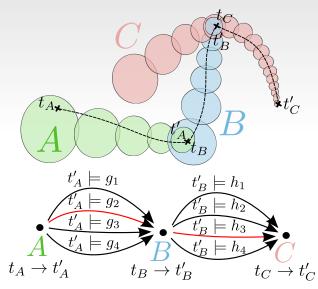


imed automa

(Abstra

sults Conclu

ABSTRACTION OF CONTROL FUNNELS

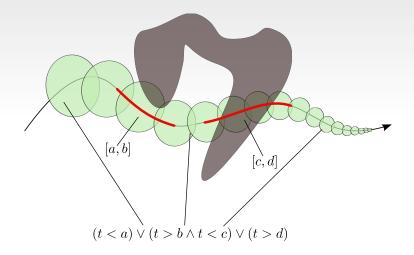


'imed automa

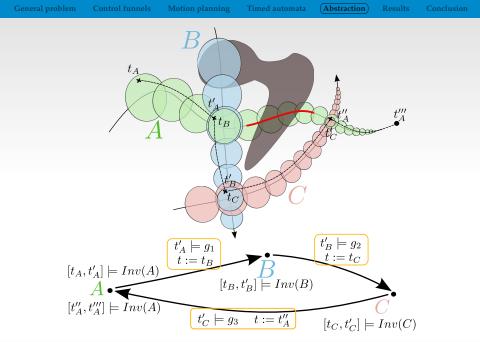
Abstrac

ults Conclus

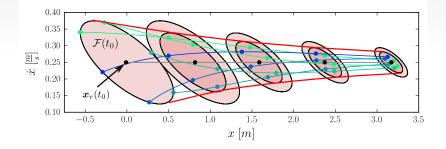
$OBSTACLES \rightarrow INVARIANTS ON CLOCKS$



TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNEL

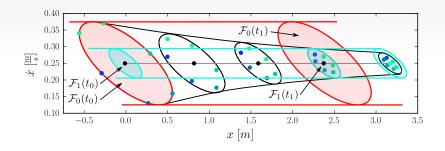


FIXED-SIZE CONTROL FUNNELS AND A NEW CLOCK



TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

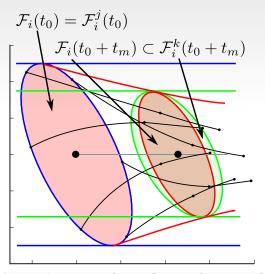
FIXED-SIZE CONTROL FUNNELS AND A NEW CLOCK

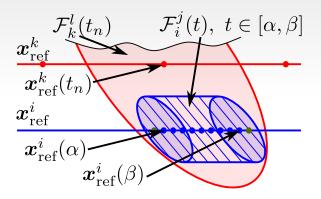


TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

FIXED-SIZE CONTROL FUNNELS AND A NEW CLOCK

(Abstraction)

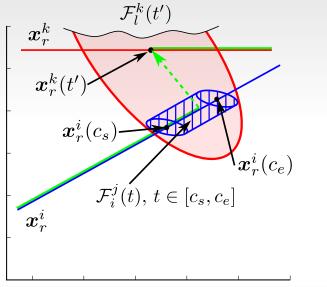




(Abstract

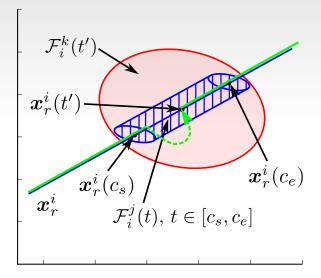
esults Conclu

Reference trajectory switches



esults Conclu

LOCAL ACCELERATIONS



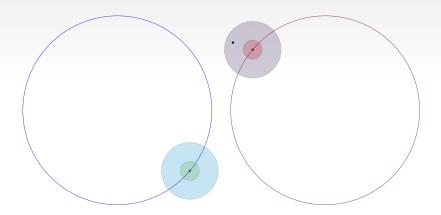
limed automa

Abstracti

(Results)

Conclusion

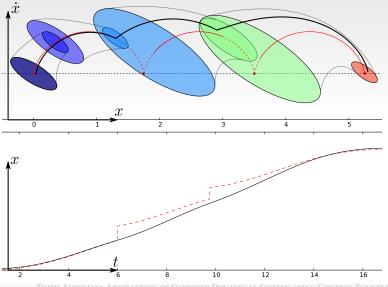
SIMPLE 1D EXAMPLE WITH FIXED-SIZE CONTROL FUNNELS



(Results) Co

Conclusion

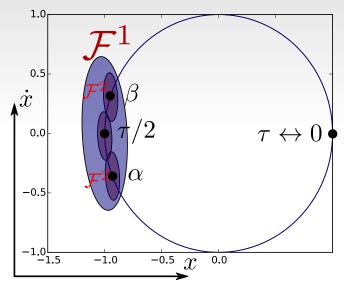
LQR FUNNELS FOR LINEAR SYSTEMS



(Results) C

Conclusion

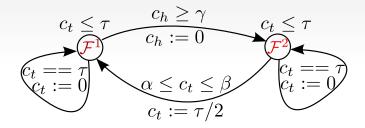
A SYNCHRONIZATION GAME



(Results)

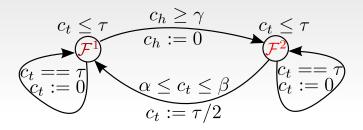
Conclusion

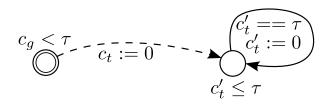
A SYNCHRONIZATION GAME



(Results) Conc

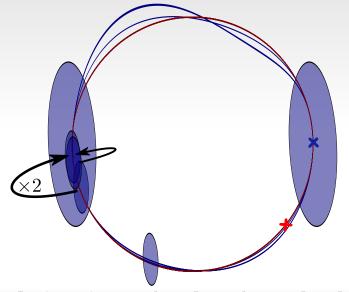
A SYNCHRONIZATION GAME



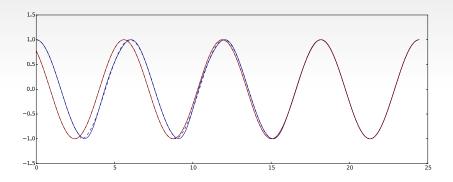


(Results) Co

A SYNCHRONIZATION GAME



A SYNCHRONIZATION GAME



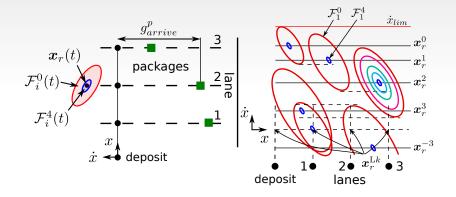
TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

Abstracti

(Results)

Conclusion

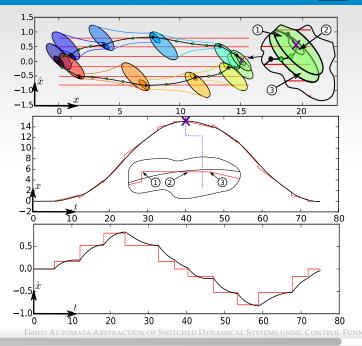
A 1D PICK-AND-PLACE PROBLEM



TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS

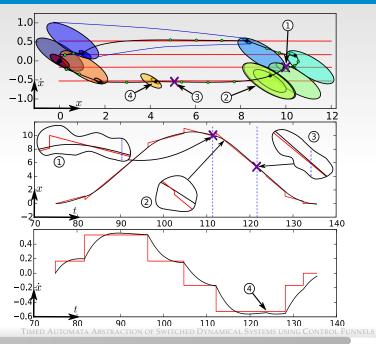
Conclusion

(Results)



Conclusion

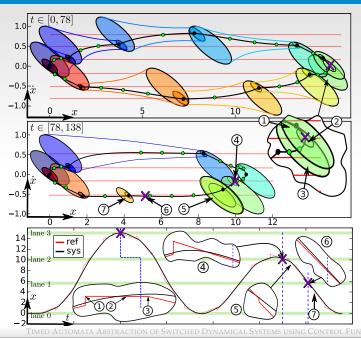
(Results)



Timed automat

Abstractio

(Results) Conclusi



- Main goal : scale up to more practical problems.
- How ? By combining formal methods and numerical methods (optimization, learning, etc.).

TIMED AUTOMATA ABSTRACTION OF SWITCHED DYNAMICAL SYSTEMS USING CONTROL FUNNELS