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Context

= Escherichia coli 1s a popular microorganism in biotechnology applications, and the most
commonly used host cell for the production of recombinant proteins and many other
biopharmaceutical products.

= Computer control of the biochemical state variables can help to increase performance
significantly.

= To maximize the biomass production and reach high cell densities, a substrate feeding strategy
must be considered.

= Overfeeding the culture can lead into acetate production, a cell growth inhibiting byproduct.

= To maintain the culture in optimal operating conditions, an optimal closed-loop control
algorithm coupled with a state estimator is developped.
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Bottleneck assumption
S < Scr?lt S = Scr"ét S > Scrit

Substrate

Acetate
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Substrate
Acetate
Substrate

Respirative regime Optimal operating conditions Respiro-fermentative regime

Substrate + Oxygen — Biomass + Carbon dioxide
Substrate + Oxygen — Biomass + Acetate + C'arbon dioxide
Acetate + Oxygen — Biomass + Carbon dioxide




Model

The macroscopic model of E. coli follows the reaction scheme :

Substrate oxidation : kS + k, O s kle + k. C
Substrate fermentation ksoS + kogO k’le + koA + k.oC
Acetate oxydation :  kazA -+ kosO 222 kng + k.3C

— X, S, A, O, et C are respectively, the biomass, glucose, acetate, dissolved
oxygen and carbon dioxyde.
ke, (i =1,2,3) are the yield coefficients.
i (i =1,2,3) are the specific growth rates.
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® g5 et g5 Glucose consumption rate and its maximal value.

e gac Acetate consumption rate.




State space model

A mass balance modeling considering homogeneous well-stirred fed-batch reactor leads to:

X — (k’.’l,'lljfl + k:r:Q/LQ + k’wgll;g)X — % X Agitator
S = —(p1 +p2)X — F&” (S — Sin) Feed /

A — (k/AQHQ L {Lg)X — % A medium Fin

vV = F (Sin)

e X, S5, A, and V are respectively, the biomass, glucose, acetate
concentrations, and the culture volume.

o [ 1s the medium inlet feed-rate.

e The dynamics of O & C' are not considered in this model.

X,S, A (O, C)

To sum up:

Or in a discrete form: bioreactor

Lh+1 = f(xka F’??’?)




Setpoint

NMPC controller

Sensor

Y

Ty,
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Objective:

M aximize the biomass growth

Our strategy

Develop a control law that tracks a
reference profile in a fed-batch £. coli
culture process using a nonlinear
predictive control (NMPC) srategy
coupled to an Unscented Kalman Filter
(UKF) estimator.
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Model predictive control

= Regulation of Biomass concentration X to a reference profile X” while the feed-rate F;, to
track a specified feed-rate profile F;, .-

= The optimization problem considers minimizing the following quadratic cost function over a
finite horizon A, applying only the first control value according to the receding horizon

strategy:
N
min Z ||)A(;{;+.i kﬂH + A Z | Fing.; — ?:’Hn;-(:j'k_i_,i HZ
1=1

{f‘f\,(f‘}\:\r lp-F’ink----F?'.‘n.k_i_;\r_|

f Xﬁ.‘:—i—l Hf( m;‘) H :[l O O O]
: X 1s the predicted output
stq : X is the predicted state vector
Xeon = Hf (k-1 Finpo v : . :
2 f(/”‘:;:‘go G N)I N is the prediction horizon
Fraz 2 Finy 20 VE€EN A 1s the control weighting factor
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Nonlinear model predictive control applied to E. Coli
culture

= Difficulties when solving this problem:

= Such control requires discretization of the model with a small sampling time, so that the
discretized model, remains significant compared to the continuous one.

=» This leads to a sampling time much too short compared to the time response of the
system.

= The presence of nonlinear constraints increases the on-line computation time when solving
the optimization problem.

=  How can we avoid these difficulties?
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Nonlinear model predictive control applied to E. Coli culture

= The idea
formulation

IS to move the classical
programming

into a

(NLP) problem.

nonlinear

NMPC

= The resulting strategy is based on the Control

Vector Parametrization (CVP) technique:

= Only the control actions are discretized with
respect to time. The sampling time can thus

be chosen much larger than in the case of

classical discretization.

= A piecewise constant approximation of such

control actions

IS considered for the conti-

nuous-time computation of the predicted state

vector,
variables.
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Nonlinear model predictive control applied to E. Coli
cultures

= The formulation of the NMPC problem becomes:

N N
~___~ win > Xk = Xipl®> + A N Fonis = Fonge P

-1 pF’ink ?'_n.k_i_hr__l

st Foar > Fin, >0 VkeN

= The number of constraints is drastically decreased.

= The tuning parameters are N and A
= N chosen as a trade-off between computation burden and performance (anticipation effect)

= A chosen as a trade-off between the control smoothness and performance (accuracy)
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UKF estimation

= Goal : on-line estimation of the acetate and the glucose concentration based on
the biomass measurement

= Nonlinear dynamics. Kalman filtering.

= Unscented Kalman filter:
Derivative-free

Propagation of the nonlinear dynamics through Sgrma points

Estimated state is given by linear regression of these points.

3 steps.

= Calculate the Sigma points
= Prediction

= Update

16



Unscented Kalman Filtering Algorithm (1/2)

= Consider the nonlinear discrete system:

Xps1 = f (g, ug) + vy v ~N(0,Q), wr~N(O,R)

Vi = h(xg) + wy Xo = E[xo], Py = E[(x¢g — Xo)(xo — Z0)']

n = dim(x)
= Step 1. Selection of the Sigma points:

(xk—1)0 = Xp—1

. _ T
(xk—l)i = Xg-1 TV. (\/ Pk_l)i' i=1,...,n, Y Zn + u
(Xi-1)i = Ze1 = V- (VPro1),_, i=n+1,..,2n A, =a*(n+x)—n

= Step 2: Prediction

Xiik-1 = [ X1, Ug-1] X = z M/i(m)xi,klk—l Wo(m) = n/1+_1/11’ VI/O(C)
i=0 u
‘ on W(m) W(C)

Yrie—1 = h[Xpp—1] | o
Yk = Z WY k-1

+/1

+1-—a*+p
u;
2(n+1y)
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Unscented Kalman FilteringAlgorithm (2/2)

2n

Py = z Wi(c) | i k=1 = 2 | [ Xigepe—1 — ??E]T +
i=0

o Step 2: Prediction

2n
Py, 5, = Z Wi(C) [yi,k|k—1 — y]:][yi,k|k—1 — ?E]T + R
=0

2n

—~ ~_1T
Py ox, = z Wi(c) [xi,klk—l — xk][xi,k|k—1 — & |
i=0
o Step 3: Update
AN -1
Ky = Pykxkpffkf’k

UKF tuning parameters : covariance matrices Q, R, Py, UKF parameters a, 3, k
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Reference trajectory

Initial conditions for reference profile

60
-
Variable Value Unit 540
X() 0.3 (}/L %
So 0 g/ L € 10
Ao 0.1 g/L _%
Vo 3.15 L

Exponential feeding profile: [1]

0.8
E;,, = Fye(t—to) 0.6
04 T 0.4
Fo=48¢""L/h n=0.2 i O
0.2
0 i
10 15 20 25 30
time (h)
[1] €. Retamal, L. Dewasme, A.-L. Hantson, A. Vande Wouwer Parameter 20

estimation of a dynamic model of FEscherichia coli fed-bateh cultures. Bio-
chemical Engineering Journal



Reference trajectory

kslS + kolo % k.’b‘lX + kclc
o X

stS + koQ() — k*}"lX + k‘AQA + chC
kasA + kosO 225 ks X+ ks C

3

2

M3

N

reference
| | |
10 15 20 25
time (h)
[ [ [
reference
| | |
10 15 20 25
time (h)
[ [ [
reference
| | |
10 15 20 25
time (h)
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UKF & NMPC : performance test

Estimator initial conditions:

Variable Value Unit
Xo X + 50% Q‘/L
So So+10%  g/L
fi() Ay + 10% (}/L
Vo Vo+10% L

Estimator parameters:

102 0 0

)
0 102 0 ; R =10 2%(g/L)?

(
Q- ‘
0 0 1072
0 0 0 1072
——
5103 0 0 0 a 10
N 0 51072 0 0 A 2
Po = 0 0 11072 0 :
0 0 0 10! K 0

NMPC parameters :

Variable Value Unit
N 10 —

T, D min
A 0.8 -

50

40 1

biomass (g/L)

10 |

time (h)
3
Real state
2t — — — estimated state
=
=
21
g
©
3
0 -
-1 : : : : :
0 5 10 15 20 25
time (h)

30 |

20 r

Real state
— — — estimated state
Reference state

5 10

15

20

25

(I/h)

F

in

6
Real state
- — — — estimated state
= 4
2
©
[0}
Q
o
227
o
0 1 1 i L L
0 5 10 15 20 25
time (h)
0.8
NMPC
0.6 Reference
04r
0.2
0

0 5 10 15 20 25
time (h)

Good performance of the NMPC and UKF algorithms
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Biomass (g/L)
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Acetate (g/L)
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After a transitory phase, the estimator and the controller give a good performance
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kslS + kolo % k.’b‘lX _I_ kclc
O 122 b X 4 hasA+ koC < 2
kasA+ kosO 25 ks X + ks C

ks? S + ko?

Respir@éspireniad ivegingeme

K3

2

Closed loop

reference
| | |
10 15 20 25
time (h)
[ [ [
Closed loop
= reference -
| | |
10 15 20 25
time (h)
N
N
N [ [ [
N
Closed loop
reference
| | |
10 145) 20 25
time (h)
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Preliminary robustness test. model mismatch

= Three parameters were altered to test the robustness of the control and estimation algorithms
= These parameters appear in the following equations which represent the specific growth rate expressions in
the respiro-fermentative regime:

qs?n azr qo max I&’ A
\ \ 7

4/ 2 o = (Kia)
2 K.+ S Ll kos A

min(qs, gs,.., ) max(0,qs — (..., )

/1’1 — ksl li_:z — kSQ

= The parameters q, and q.,,,, were altered by 20%

= The parameter K, was altered by 10%
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Biomass (g/L)

30

25

20

15

10

03 03
0.2 0.2
~ 0.1 0.1
0.5 0
Real state
- — _ __ estimated state —
Reference state
| | | |
5 10 15 20 25

time (h)

Glucose (g/L)
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Acetate (g/L)

2.5

Real state

— — _ estimated state

15

time (h)

Good performance of the NMP C and UKF algorithms
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Conclusion

A macroscopic model describing the metabolism of £. coli was presented

= Development of the NMPC controller to track a biomass and a feeding reference trajectory.

= State estimation using an Unscented Kalman Filter presents advantages due to the nonlinearity of the system

= Simulation results show the efficiency of the proposed strategy (NMPC controller coupled to an unscented

kalman filter).

Perspectives

Determination of an optimal trajectory according to the bottleneck theory
Analyze further the performance and robustness of the proposed strategy
Experimental validation of the proposed control strategy on an £. coli culture.

Online optimization of the biomass growth : determination of the appropriate criterion (growth rate,
biomass concentration, ..)

Robustification of the control and estimation strategies w.r.t. model mismatch and measurement errors
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