

Comparative Study Between Two Tuning MPC Approaches: Application to a Simulated QTW UAV

Marwa TURKI, Khaled Benkhoud, Nicolas LANGLOIS & Adnan YACINE

PRÉDIRE est cofinancé par l'Union européenne. L'Europe s'engage en Normandie avec le Fonds européen de développement régional GT CPNL ONERA Châtillon le 04/06/2018

Outline

- Introduction
- The convertible UAVs
- QTW T-S Fuzzy Modeling
- TSMPC tuning based PSO approch
- TSMPC tuning based Analytical approch
- Comparative Study
- Conclusion & outlook

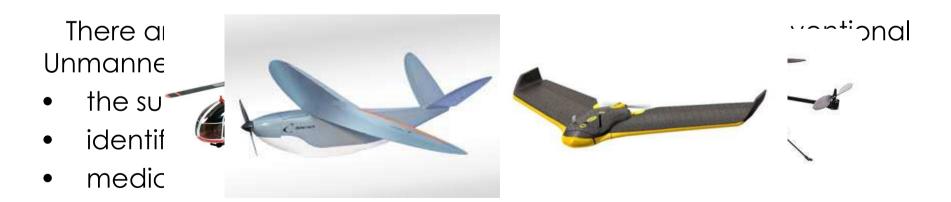
Introduction

- Motivations
- Influence of parameters values
- Existing approaches

The convertible UAVs (1/2)

UAVs are divided in two major categories :

- **The rotary-wing systems :** which lift is provided by the rotation of the propellers
 - ✓ Take-off and landing vertically, perform the hover flight,...
- **The fixed-wing systems :** which lift is provided by the airflow over the wings induced by the own movement of the vehicle
 - ✓ fly forward at high speed, long range, superior endurance,...



The convertible UAVs (2/2)

The convertible aircrafts :

- combines the advantages of rotary-wings and fixed-wings aircrafts
- minimizes the energy consumed in forward flights
- can take-off and landing vertically
- transition between the hover flight to forward flight and vice versa

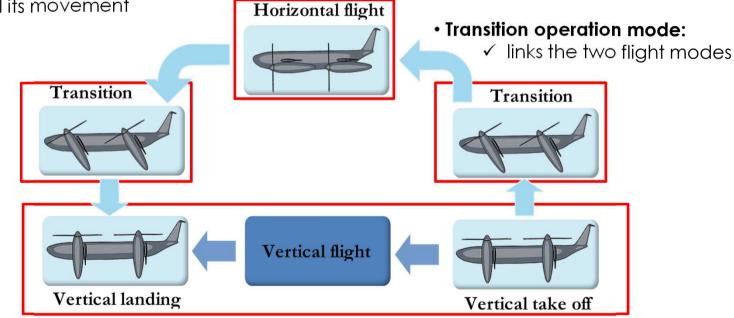
The transition between the flight phases :

- tilting the full vehicle body (tail-sitter or tilt-body)
- tilting only its rotors using a dedicated mechanism (tilt-rotor or tilt-wing)

Modeling of the QTW UAV (1/3)

• Horizontal flight mode :

- ✓ behaves like a conventional plane
- ✓ the tilt angle of wings almost equal to zero degree
- generates the aerodynamic forces to lift and control its movement



• Vertical flight mode:

- ✓ the tilt angles of the wings are nearly equal to 90°
- \checkmark based only on its rotors
- ✓ behaves like a Quadrotors

Modeling of the QTW UAV (2/3)

The NEWTON-EULER formalism

$$m\dot{V_i} = F_t$$
$$I_c\dot{\Omega}_c = -M_t + \Omega_c \wedge (I_c \times \Omega_c)$$

Translational equations of motion :

 $m\dot{V_i} = F_t$ with F_t is the total external force :

$$F_t = R_{ib}(F + F_g + F_d + F_a)$$

where :

F : the total thrust forces

 $F_{_{o}}$: the gravity forces

 F_d : the external disturbances

 F_a : the aerodynamic forces

Rotational equations of motion :

$$I_{c}\dot{\Omega}_{c} = -M_{t} + \Omega_{c} \wedge (I_{c} \times \Omega_{c})$$

with M_t the total external torque :

$$M_{t} = M + M_{g} + M_{d}$$

where :

M : the thrust torques

 M_g : the gyroscopic effects

 M_d : the external disturbances

 M_a : The aerodynamic torques

Modeling of the QTW UAV (3/3)

Dynamics model of a QTW vehicle

$$\begin{cases} \ddot{x} = \frac{1}{m} \Big[(c\psi c\theta c\gamma - (c\phi s\theta c\psi + s\phi s\psi) s\gamma) T_{t} + (c\psi c\theta) F_{D} + (c\phi s\theta c\psi + s\phi s\psi) F_{L} \\ \ddot{y} = \frac{1}{m} \Big[(s\psi c\theta c\gamma - (c\phi s\theta c\psi - s\phi c\psi) s\gamma) T_{t} + (s\psi c\theta) F_{D} + (c\phi s\theta s\psi - s\phi c\psi) F_{L} \\ \ddot{z} = \frac{1}{m} \Big[(-s\theta c\gamma - c\phi c\theta s\gamma) u_{I} - s\theta F_{D} + (c\phi c\theta) F_{L} \Big] + g \\ \ddot{\phi} = \frac{1}{I_{xx}} \Big[s\gamma \tau_{\phi} + (I_{yy} - I_{zz}) qr - (J_{r}\theta \omega_{p}) s\gamma + M_{\phi} \Big] \\ \ddot{\theta} = \frac{1}{I_{yy}} \Big[s\gamma \tau_{\theta} + (I_{zz} - I_{xx}) pr + J_{r}\omega_{p} (\phi s\gamma + \psi c\gamma) + M_{\theta} \Big] \\ \ddot{\psi} = \frac{1}{I_{zz}} \Big[s\gamma \tau_{\psi} + (I_{xx} - I_{yy}) pq - (J_{r}\theta \omega_{p}) c\gamma + M_{\psi} \Big] \end{cases}$$

The control inputs of the QTW :

$$U = \begin{bmatrix} T_t \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} = \begin{bmatrix} k & k & k & k \\ kl_s & -kl_s & kl_s & -kl_s \\ kl_l & kl_l & -kl_l & -kl_l \\ k\lambda & -k\lambda & -k\lambda & k\lambda \end{bmatrix} \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \\ \omega_3^2 \\ \omega_4^2 \end{bmatrix}$$

8

QTW T-S Fuzzy Modeling (1/4)

Takagi-Sugeno Fuzzy Models

• T-S models are based on linguistic representation rules such as [Takagi et Sugeno (1985)] :

If premise Then consequence

• If we use singleton fuzzifier, product inference engine and center of gravity defuzzification the T-S fuzzy model can be represented as :

$$\begin{aligned} \dot{x}(t) &= \sum_{i=1}^{N} \mu_i(\theta) \left(A_i \ x(t) + B_i \ u(t) \right) \\ y(t) &= \sum_{i=1}^{N} \mu_i(\theta) \ C_i \ x(t) \end{aligned}$$

 $\sum_{i=1}^{N} \mu_i(x(t), u(t)) = 1 \text{ et } 0 \le \mu_i(x(t), u(t)) \le 1$

Obtaining T-S models

- Identification [Tanaka et Sugeno (1992)]
- Linearization around different operating points [Johansen et al. (2000)]
- Sectors non linearity approach [Tanaka et al. (1998)] : Convex Polytopic Transformation (CPT)

QTW T-S Fuzzy Modeling (2/4)

• 1st step : the transformation of a nonlinear dynamic model into an LPV model

$$\begin{cases} \dot{x}(t) = A(\theta) \ x(t) + B(\theta) \ u(t) \\ y(t) = C(\theta) \ x(t) \end{cases}$$

• **2nd step :** the convex polytopic transformation is applied for each premise variables :

$$\theta(x,u) = F_0^j \overline{\theta} + F_1^j(\theta) \underline{\theta} \quad \text{as} \quad \begin{cases} \overline{\theta} = \max\{\theta(x,u)\} \\ \underline{\theta} = \min\{\theta(x,u)\} \end{cases}$$

ith
$$F_1^j = 1 - \mu_1(\theta) = \frac{\overline{\theta} - \theta(x,u)}{\overline{\theta} - \underline{\theta}} \quad \text{and} \quad F_0^j = \frac{\theta(x,u) - \underline{\theta}}{\overline{\theta} - \underline{\theta}}$$

The membership functions :

W

$$\mu_i(\theta(t)) = \frac{w_i(\theta(t))}{\sum_{i=1}^r w_i(\theta(t))} \quad \text{with} \quad w_i(\theta(t)) = \prod_{j=1}^r w_{i_j}^j(\theta_j)$$

• **3nd step :** The local models constituting the T-S models are given by:

$$A_{i} = A(\theta(.))|_{w_{i}(.)=1}, B_{i} = B(\theta(.))|_{w_{i}(.)=1}, C_{i} = C(\theta(.))|_{w_{i}(.)=1}, D_{i} = D(\theta(.))|_{w_{i}(.)=1}$$

QTW T-S Fuzzy Modeling (3/4)

• QTW UAV attitude dynamics during the VTOL mode :

$$\begin{cases} \ddot{\varphi} = \frac{\tau_{\phi}}{I_{xx}} + \frac{I_{yy} - I_{zz}}{I_{xx}} qr - \frac{J_r}{I_{xx}} q\omega_p \\ \ddot{\theta} = \frac{\tau_{\theta}}{I_{yy}} + \frac{I_{zz} - I_{xx}}{I_{yy}} pr + \frac{J_r}{I_{yy}} p\omega_p \quad \text{with} \quad \begin{cases} \phi \in [-\pi/2, +\pi/2[] \\ \theta \in [-\pi/2, +\pi/2[] \\ \theta \in [-\pi/2, +\pi/2[] \\ \psi \in [-\pi, +\pi[] \end{cases} \end{cases} \\ \psi \in [-\pi, +\pi[] \end{cases}$$

• The quasi-LPV system obtained :

$$\begin{cases} \dot{x}(t) = A(\theta) \ x(t) + B \ u(t) \\ y(t) = C \ x(t) \end{cases}$$

with :

$$A(x) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_1 \dot{\theta} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_2 \dot{\phi} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_3 \dot{\theta} & 0 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 & 0 & 0 \\ b_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & b_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & b_3 \end{bmatrix}$$
$$a_1 = \frac{I_{yy} - I_{zz}}{I_{xx}}; a_2 = \frac{I_{zz} - I_{xx}}{I_{yy}}; a_3 = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

11

QTW T-S Fuzzy Modeling (4/4)

- Based on the sectors non linearity approach two nonlinear continuous terms $\left(\dot{\phi},\dot{\theta}
 ight)$ can be observed.
- The nonlinear model is written as four local linear models $(r = 2^p = 2^2)$ as :

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{1}\underline{z}_{2} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_{2}\underline{z}_{1} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_{3}\underline{z}_{2} & 0 & 0 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{1}\overline{z}_{2} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_{3}\overline{z}_{2} & 0 & 0 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{1}\underline{z}_{2} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{2}\overline{z}_{1} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_{3}\overline{z}_{2} & 0 & 0 \end{bmatrix} \quad A_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{2}\overline{z}_{1} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & a_{3}\overline{z}_{2} & 0 & 0 \end{bmatrix}$$

Particle Swarm Optimization(1/3)

- The PSO algorithm was first described in 1995 by **James Kennedy** and **Russell C. Eberhart** inspired by social behavior of bird flocking or fish schooling.
- PSO is an **artificial intelligence (AI)** technique that can be used to find approximate solutions to extremely difficult or impossible numeric maximization and minimization problems.
- PSO algorithm uses a swarm consisting of n_p particles, randomly distributed in the considered initial search space, to find an optimal solution of a generic **optimization problem**.

Particle Swarm Optimization(2/3)

- In every iteration, each particle is updated by two "**best**" values:
 - ✓ p_k^i : the best previously obtained position of the ith particle; ✓ p_g^i : the best obtained position in the entire swarm.
- At each algorithm iteration, the ith particle position, $x^i \in \mathbb{R}^d$, evolves based on the following update rules:

$$\boldsymbol{x}_{k+1}^{i} = \boldsymbol{x}_{k}^{i} + \boldsymbol{v}_{k+1}^{i}$$
$$\boldsymbol{v}_{k+1}^{i} = w\boldsymbol{v}_{k}^{i} + c_{1}r_{1,k}^{i}\left(\boldsymbol{p}_{k}^{i} - \boldsymbol{x}_{k}^{i}\right) + c_{2}r_{2,k}^{i}\left(\boldsymbol{p}_{k}^{g} - \boldsymbol{x}_{k}^{i}\right)$$

Where

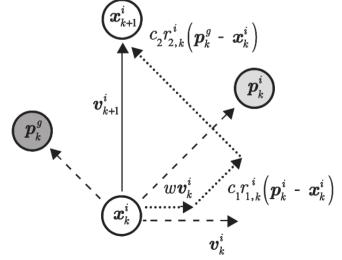
W : the inertia factor;

 c_1, c_2 : the cognitive and the social scaling factors; $r_{1,k}^i, r_{2,k}^i$: random numbers uniformly distributed.

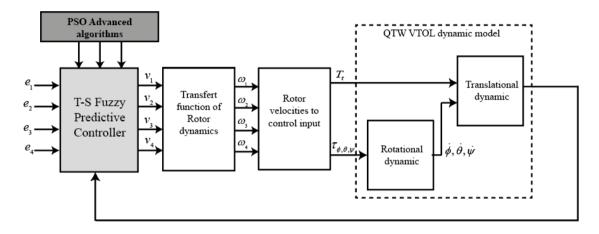
Particle Swarm Optimization(3/3)

Particle Swarm Optimization Algorithm

- 1. Define all PSO algorithm parameters
- 2. Randomly initialize the particles positions and velocities. Evaluate the initial population and determine and .
- 3. Increment the iterations . For each particle, apply the update motion equations
- 4. Evaluate the corresponding fitness values :
 - i. if $\boldsymbol{\varphi}_k^i \leq pbest_k^i$ then $pbest_k^i = \boldsymbol{\varphi}_k^i$ and $\boldsymbol{p}_k^i = \boldsymbol{x}_k^i$,
 - ii. if $\boldsymbol{\varphi}_k^i \leq gbest_k$ then $gbest_k = \boldsymbol{\varphi}_k^i$ and $\boldsymbol{p}_k^g = \boldsymbol{x}_k^i$,
- 5. If the termination criterion is satisfied, the algorithm terminates with the solution. Otherwise, go to step 3. (r^i)



TSMPC tuning based PSO



• An optimization based approach for design and tuning of a MPC parameters

 (N_c, N_p, λ) for each local predictive controller.

• These design parameters present the decision variables of the following multiobjective optimization problem :

$$\begin{cases} \text{minimize } f_i(\mathbf{x}) \\ \mathbf{x} = \begin{pmatrix} N_c, N_p, \mathbf{\lambda} \end{pmatrix}^T \in S \subseteq \square_+^{12} \\ \text{subject to:} \\ g_1(\mathbf{x}) = \delta_{\phi} - \delta_{\phi}^{\max} \leq 0 \\ g_2(\mathbf{x}) = \delta_{\theta} - \delta_{\theta}^{\max} \leq 0 \\ g_3(\mathbf{x}) = \delta_{\psi} - \delta_{\psi}^{\max} \leq 0 \end{cases} \quad \text{where :} \begin{cases} f_i : \square^{15} \to \square \\ \delta_{\phi}, \delta_{\theta}, \delta_{\psi} \end{cases} \text{ : the overshoots of the controlled states} \end{cases}$$

Analytical tuning approch proposed N_c computation (1/2)

• Hessian condition number

 $H = (\Phi^t \Phi + \bar{R})^{-1}$

 $(n_{in}\dot{Nc} \times n_{in}Nc)$

$$\begin{aligned} cond(H(k)) &= \|H(k)\|_2 \cdot \left\|H(k)^{-1}\right\|_2 \\ &= \frac{\sigma_{max}(k)}{\sigma_{min}(k)} \end{aligned}$$

- Condition number & stability $N_c \mapsto \infty, N_p \mapsto \infty$
- Concept of effective rank

N_c computation (2/2)

- Method proposed
- 1) To initialize $N_c \mapsto \infty$ and $N_p \mapsto \infty$ (Nc < Np).
- 2) To take $A_{ER} = H$ [16].
- 3) To evaluate Q defined as follows [9]:

$$Q = min\{M_{ER}, N_{ER}\} = min\{n_{in}Nc, n_{in}Nc\}$$
$$= n_{in}Nc.$$

- 4) To decompose *H* into singular values and to evaluate $\sigma = \begin{bmatrix} \sigma_1 & \sigma_2 & \cdots & \sigma_\infty \end{bmatrix}^T$: $H = U_H D_H V_H$ $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_\infty$
- 5) To evaluate the singular value distribution p_k with $k = [1, 2, \dots, \infty]$.
- 6) To calculate the Shannon entropy [16].

7) To solve
$$\begin{cases} N_c^{opt} = round(\frac{e^{H_{Shannon}(p_1, p_2, \cdots, p_{\infty})}}{n_{in}})\\ \min(N_c^{opt}); \ \min(cond(H(k)) - 1) \end{cases}$$
18

N_p computation (1/3)

Closed-loop eigenvalues

$$det[\nu I_{(n_A \times n_A)} - (A - BK_{mpc})] = 0$$

• Optimal closed-loop stability

Insensitivity
approach
$$\left\{ \begin{array}{cc} \min \gamma & \text{Yalmip} \\ \hline & 1 \\ (A - BK_{mpc})^T & -\gamma I_{(n_A \times n_A)} \end{array} \right\} < 0 \qquad (K_{mpc})^{opt}$$

N_p computation (2/3)

• Relationship between K_{MPC} and $\Phi^T \Phi$

From
$$K_{mpc} = I_{(n_{in} \times N_c)} (\Phi^T \Phi + \bar{R})^{-1} \Phi^T F$$

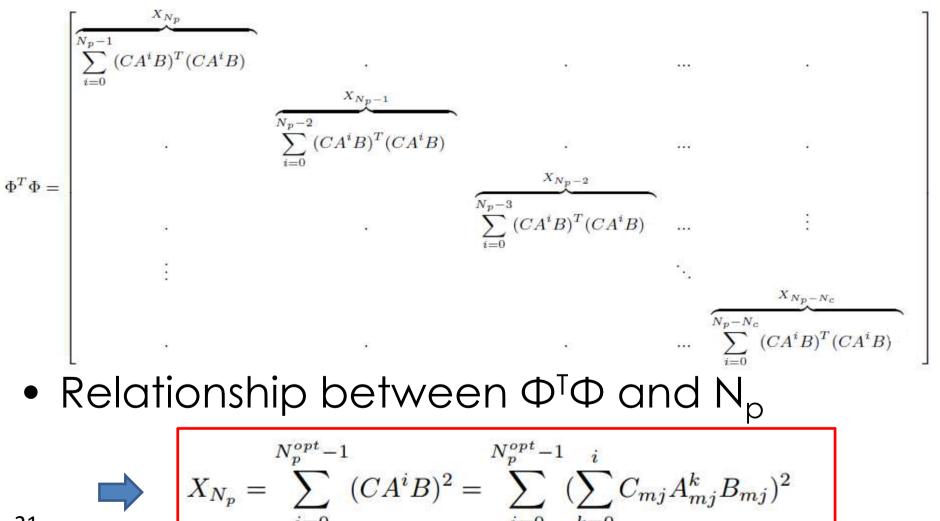
Under the assumption $(\Phi^T \Phi)^{-1} \overline{R}$ is nilpotent of order n,

$$H = (\Phi^T \Phi)^{-1} - (\Phi^T \Phi)^{-1} \bar{R} (\Phi^T \Phi)^{-1} + [(\Phi^T \Phi)^{-1} \bar{R}]^2 (\Phi^T \Phi)^{-1} - \cdots + (-1)^{n-1} [(\Phi^T \Phi)^{-1} \bar{R}]^{n-1} (\Phi^T \Phi)^{-1}$$

$$(\Phi^{T}\Phi)^{opt} = [-\bar{R} + \bar{R}(\Phi^{T}\Phi)^{-1}\bar{R} - \cdots + (-1)^{n-1}(\Phi^{T}\Phi)^{-1}[(\Phi^{T}\Phi)^{-1}\bar{R}]^{n-1}] \times [(K_{mpc})^{opt}F^{T}(FF^{T})^{-1}\Phi - I_{(n_{in}N_{c}\times n_{in}Nc)}]^{-1}$$

 N_p computation (3/3)

• Focus on $\Phi^T \Phi$



\overline{R} computation (1/2)

• Expanded cost fonction [11]

$$J = (Y_{des} - Fx(k))^{t} (Y_{des} - Fx(k))$$
$$- 2\Delta U^{t} \Phi^{T} (Y_{des} - Fx(k)) + \Delta U^{t} (\Phi^{t} \Phi + \bar{R}) \Delta U$$

• Cost fonction minimization

$$\begin{cases}
\frac{\partial J}{\partial \Delta U} = 0 \\
\frac{\partial J}{\partial R} = 0
\end{cases}$$

\overline{R} computation (2/2)

• Cost fonction derivative

$$\frac{\partial J}{\partial \bar{R}} = (\Phi^T \Phi)^{-1} G^T G (\Phi^T \Phi)^{-1}$$
$$- 2(\Phi^T \Phi)^{-1} \bar{R} (\Phi^T \Phi)^{-1} G^T G (\Phi^T \Phi)^{-1}$$

with
$$\begin{cases} G = \Psi^T \Phi \\ \Psi = Y_{des} - Fx(k) \end{cases}$$

$$\bar{R}_{opt} = \frac{1}{2} (\Phi^T \Phi) \qquad \implies \quad \bar{R}_{opt} = \begin{bmatrix} \lambda_1^{opt} & 0 & \cdots & 0 \\ 0 & \lambda_2^{opt} & \cdots & \vdots \\ \vdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \lambda_{n_{in}N_c}^{opt} \end{bmatrix}$$

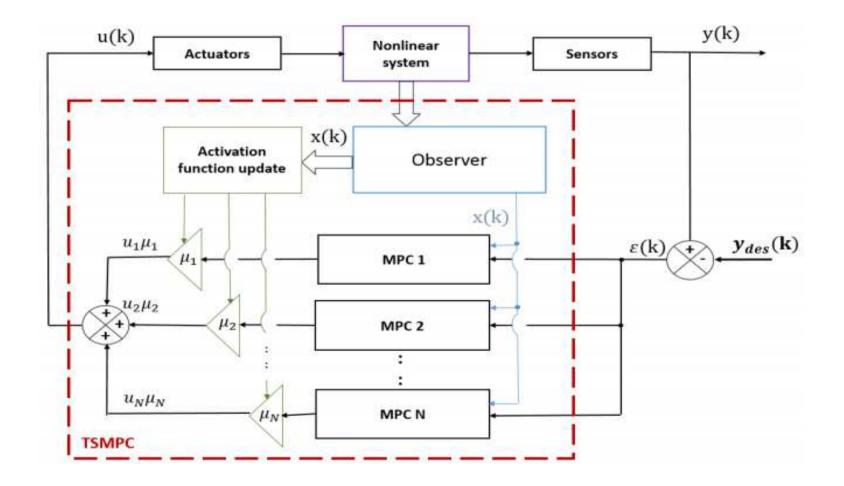
In summary

• Multi-objective issue adressed

$$\begin{split} \min(N_c^{opt}) \\ \min(cond(H(k)) - 1) \\ N_c^{opt} = round(\frac{e^{H_{Shannon}(p_1, p_2, \dots, p_\infty)}}{n_{in}}) \\ X_{N_p} &= \sum_{i=0}^{N_p^{opt} - 1} (\sum_{k=0}^i (C_m A_m^k B_m)^T (C_m A_m^k B_m)) \\ \bar{R}_{opt} &= \frac{1}{2} (\Phi^T \Phi) \end{split}$$

Case of Nonlinear MIMO System

• MPC Control structure



Application : comparative study

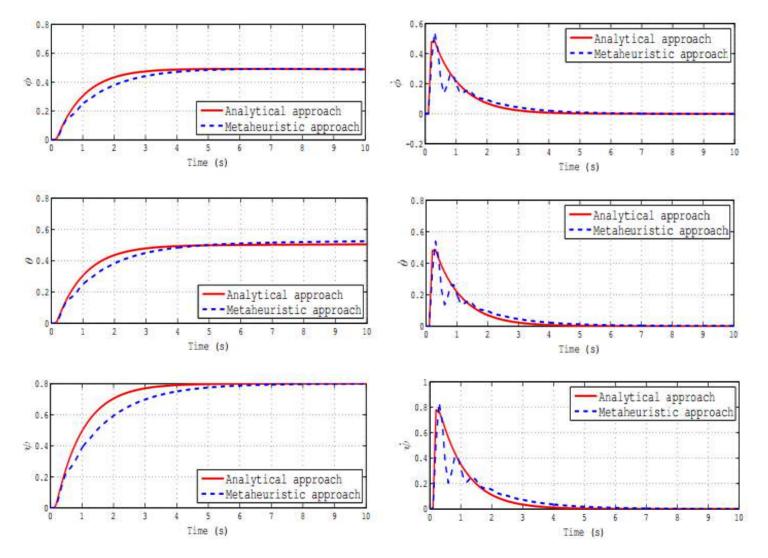
- Computing the weighting factor based on
 - Our metaheuristic approch
 - Our analytical approach

• MPC parameters

	Metaheuristic approach				Analytical approach			
	OA1	OA2	OA3	OA4	OA1	OA2	OA3	OA4
N_c	5	5	5	5	5	5	5	5
N_p	29	29	29	29	29	29	29	29
•	0.9450	0.0495	0.1655	3	0.0095	0.0033	0.0133	0.051
λ	1	1.6982	2.2678	2.9962	0.008	0.0024	0.065	1.022
	0.0297	3	0.0018	2.9807	0.0067	0.005	0.0065	0.0065

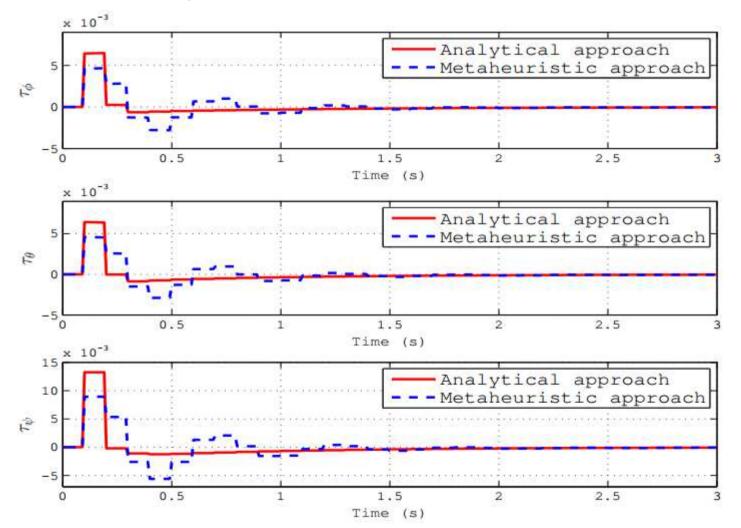
Application : simulation results

• Desired output and system output vs. time



Application : simulation results

• Control output vs. time



28

Application : perf. comparison (2/3)

• Performance obtained y1

	Metaheuristic approach	Analytical approach
RT (s)	2.1895	1.9747
ST (s)	3.8713	2.9816
OV (%)	1.2457	0
SE	0.0285	0.0091
SDI (%)	1.7764	1.1102
VARU (e^-7)	5.4067	5.1076
CSE (e^-4)	1.6959	1.3961
CEE (e^{-4})	2.9198	2.7208

• Performance obtained y2

	Metaheuristic approach	Analytical approach
RT (s)	2.0893	1.3022
ST (s)	3.8225	2.6328
OV (%)	2.1384	1.4898
SE	0.0149	0.0214
SDI (%)	3.1086	3.1086
VARU (e^-7)	5.3987	5.1076
CSE (e^-4)	1.6935	1.3961
CEE (e^{-4})	2.9121	2.7208

29

Application : perf. comparison (3/3)

• Performance obtained y3

	Metaheuristic approach	Analytical approach
RT (s)	2.0358	1.3415
ST (s)	3.7998	2.6161
OV (%)	2.0401	0
SE	0.0245	0.0002
SDI (%)	1.9984	1.2273
VARU (e^-7)	5.4068	5.4026
CSE (e^-4)	1.6959	1.5961
CEE (e^{-4})	2.9200	2.9107

Conclusion & Outlook

PSO Tuning approach:

- Advantages
- Applicable to NL MIMO systems
- Efficient search for the optimal MPC controller parameters
- Easy implementation

Disadvantages

- Offline optimization
- Number of iteration
- Don't take into account the disturbances

Analytical Tuning approach:

Advantages

- Applicable to NL MIMO systems
- Optimal closed-loop stability
- Energy consumption reduced

Disadvantages

- Requiert a representative model
- Requiert an important computational effort to be applied online

Thank you

PREDIRE est cofinancé par l'Union européenne. L'Europe s'engage en Normandie avec le Fonds européen de développement régional GT CPNL ONERA Châtillon le 04/06/2018

