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Introduction

• Motivations

• Influence of parameters values

• Existing approaches
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The convertible UAVs (1/2) 

There are tasks that go beyond the capabilities of a conventional 
Unmanned Ariel Vehicles (UAV) :

• the surveillance of objectives in rapid and static movement

• identification of cracks in pipes or bridges

• medical supplies, …

UAVs are divided in two major categories : 

• The rotary-wing systems : which lift is provided by the rotation of 
the propellers

� Take-off and landing vertically, perform the hover flight,… 

• The fixed-wing systems : which lift is provided by the airflow over 
the wings induced by the own movement of the vehicle 

� fly forward at high speed, long range, superior endurance,…
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The convertible UAVs (2/2) 

The transition between the flight phases :

• tilting the full vehicle body (tail-sitter or tilt-body)

• tilting only its rotors using a dedicated mechanism (tilt-rotor or
tilt-wing)

The convertible aircrafts :

• combines the advantages of rotary-wings and fixed-wings
aircrafts

• minimizes the energy consumed in forward flights

• can take-off and landing vertically

• transition between the hover flight to forward flight and vice
versa



6

Modeling of the QTW UAV  (1/3) 

• Vertical flight mode:
� the tilt angles of the wings are nearly equal to 90°
� based only on its rotors
� behaves like a Quadrotors

• Transition operation mode:
� links the two flight modes

• Horizontal flight mode :
� behaves like a conventional plane
� the tilt angle of wings almost equal to zero 

degree
� generates the aerodynamic forces to lift and 

control its movement
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Modeling of the QTW UAV  (2/3) 
The NEWTON-EULER formalism

i tmV F=&

( )c c t c c cI M IΩ = − + Ω ∧ × Ω&

Translational equations of motion :

with Ft is the total external force :

where :

: the total thrust forces

: the gravity forces

: the external disturbances

: the aerodynamic forces

i tmV F=&

( )t ib g d aF R F F F F= + + +

F

gF

dF

Rotational equations of motion :

with Mt the total external torque :

where :

: the thrust torques

: the gyroscopic effects

: the external disturbances

: The aerodynamic torques

( )c c t c c cI M IΩ = − + Ω ∧ × Ω&

M

gM

dM

t dgM M M M= + +

aF
aM
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Modeling of the QTW UAV  (3/3) 

Dynamics model of a QTW vehicle

The control inputs of the QTW :
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QTW T-S Fuzzy Modeling  (1/4) 

Takagi-Sugeno Fuzzy Models
• T-S models are based on linguistic representation rules such as [Takagi et

Sugeno (1985)] :

If premise Then consequence

• If we use singleton fuzzifier, product inference engine and center of gravity

defuzzification the T-S fuzzy model can be represented as :
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Obtaining T-S models

• Identification [Tanaka et Sugeno (1992)]

• Linearization around different operating points [Johansen et al. (2000)]

• Sectors non linearity approach [Tanaka et al. (1998)] : Convex Polytopic

Transformation (CPT)
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• 1st step : the transformation of a nonlinear dynamic model into an LPV
model

• 2nd step : the convex polytopic transformation is applied for each
premise variables :

as

with and

The membership functions :

with

• 3nd step : The local models constituting the T-S models are given by:
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QTW T-S Fuzzy Modeling  (2/4) 
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QTW T-S Fuzzy Modeling  (3/4) 
• QTW UAV attitude dynamics during the VTOL mode :

with

• The quasi-LPV system obtained :

with : 
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QTW T-S Fuzzy Modeling  (4/4) 

• Based on the sectors non linearity approach two nonlinear continuous 

terms            can be observed.

• The nonlinear model is written as four local linear models                         as :

( ),φ θ& &

( )22 2pr = =
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Particle Swarm Optimization(1/3) 

• The PSO algorithm was first described in 1995 by James Kennedy

and Russell C. Eberhart inspired by social behavior of bird flocking
or fish schooling.

• PSO is an artificial intelligence (AI) technique that can be used to
find approximate solutions to extremely difficult or impossible
numeric maximization and minimization problems.

• PSO algorithm uses a swarm consisting of particles, randomly
distributed in the considered initial search space, to find an
optimal solution of a generic optimization problem.

pn
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Particle Swarm Optimization(2/3) 

• In every iteration, each particle is updated by two "best" values:

� : the best previously obtained position of the ith particle;

� : the best obtained position in the entire swarm.

• At each algorithm iteration, the ith particle position, ,
evolves based on the following update rules:

i d∈x R

1 1
i i i
k k k+ += +x x v

( ) ( )1 1 1, 2 2,
i i i i i i g i
k k k k k k k kw c r c r+ = + − + −v v p x p x

Where  

: the inertia factor;

: the cognitive and the social scaling factors;

: random numbers uniformly distributed. 

w

1 2,c c

1, 2,,i i
k kr r

i
kp
i
gp
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Particle Swarm Optimization(3/3) 
Particle Swarm Optimization Algorithm

1. Define all PSO algorithm parameters

2. Randomly initialize the particles positions and velocities . Evaluate the initial

population and determine and .

3. Increment the iterations . For each particle, apply the update motion

equations

4. Evaluate the corresponding fitness values :

i. if then and ,

ii. if then and ,

5. If the termination criterion is satisfied, the algorithm terminates with the

solution . Otherwise, go to step 3.

i i
k kpbestϕ ≤
i
k kgbestϕ ≤

i i
k kpbest ϕ=

i
k kgbest ϕ=

i i
k k=p x
g i
k k=p x
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TSMPC tuning based PSO 

• An optimization based approach for design and tuning of a MPC parameters        

for each local predictive controller.

• These design parameters present the decision variables of the following multi-

objective optimization problem :

: the cost functions

where :                   : the overshoots of the controlled states 

( ), ,c pN N λ
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Nc computation (1/2)

• Hessian condition number

• Condition number & stability

• Concept of effective rank

Analytical tuning approch
proposed
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Nc computation (2/2)
• Method proposed
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Np computation (1/3)

• Closed-loop eigenvalues

• Optimal closed-loop stability

Insensitivity

approach

Yalmip

toolbox
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Np computation (2/3)

• Relationship between KMPC and ΦTΦ

Under the assumption is nilpotent of order n,

From
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Np computation (3/3)

• Focus on ΦTΦ

• Relationship between ΦTΦ and Np
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R computation (1/2) 

• Expanded cost fonction [11]

• Cost fonction minimization
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• Cost fonction derivative

R computation (2/2) 

with
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• Multi-objective issue adressed

In summary
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Case of Nonlinear MIMO System

• MPC Control structure
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Application : comparative study

• Computing the weighting factor based on 

– Our metaheuristic approch

– Our analytical approach

• MPC parameters
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Application : simulation results
P

ô
le

 A
S

• Desired output and system output vs. time 
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Application : simulation results
P

ô
le

 A
S

• Control output vs. time 
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Application : perf. comparison (2/3)
• Performance obtained y1

• Performance obtained y2
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Application : perf. comparison (3/3)

• Performance obtained y3
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Conclusion & Outlook

Analytical Tuning approach: 

� Advantages

– Applicable to NL MIMO systems

– Optimal closed-loop stability

– Energy consumption reduced

� Disadvantages

– Requiert a representative model

– Requiert an important computational

effort to be applied online

PSO Tuning approach: 

� Advantages

– Applicable to NL MIMO systems

– Efficient search for the optimal MPC 

controller parameters

– Easy implementation

� Disadvantages

– Offline optimization

– Number of iteration

– Don't take into account the 

disturbances
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