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Motivation

Motivation
Experimental setup with Crazyflie 2.0 quadcopter platform at LCIS
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Motivation
Quadcopter trajectory tracking
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Experimental results using a feedback
linearization control design.

Achievements:

Good experimental platform for studying
various control algorithms.

Feedback linearization control successfully
implemented with good tracking results.
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Experimental results using a feedback
linearization control design.

Achievements:

Good experimental platform for studying
various control algorithms.

Feedback linearization control successfully
implemented with good tracking results.

Simulation results using a hierarchical MPC
control design.

Achievements:

Two-layer MPC design combined with
feedback linearization.

Good tracking results with state and input
constraints satisfactions.

N.T. Nguyen, I. Prodan, L. Lefèvre: Multi-layer optimization-based control design for quadcopter trajectory tracking, in Proc. of
the 25th IEEE Mediterranean Conference on Control and Automation (MED’17), p.601-606,2017.
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Motivation

Motivation

Can we design an NMPC scheme with recursive feasibility and asymptotic stability?
If so, under what limitations and with what performances?

Open issues:

Linearize the system’s dynamics around the equilibrium point and design a linear MPC.
Stability proofs are not considered [Zanelli, Horn, Frison, and Diehl (2018); Nguyen, Prodan,
and Lefèvre (2017a); Zhao and Go (2014); Bemporad, Pascucci, and Rocchi (2009)].

Consider the system’s jerks as inputs of the NMPC design and decouple the motions along
the three axes for constraints fulfillment on thrust and angular velocities. No stability
guarantees are imposed [Singhal and Sujit (2015); Hehn and D’Andrea (2011)].

Consider an NMPC design without terminal cost and terminal constraint. Only recursive
feasibility guarantees are considered [Ribeiro, Conceição, Sa, and Corke (2015)].
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Design principles for NMPC stability NMPC scheme

Nonlinear Model Predictive Control

Rawlings and Muske (1993); Chen and Allgöwer (1998); Mayne et al. (2000); Mayne (2014)

Solve the open-loop optimal control problem at time t using the measured state x(t) and the
prediction horizon Tp :

min
ū(·)

∫ t+Tp

t
` (x̄(τ, t), ū(τ, t)) dτ + F (x̄(Tp , t))

subject to:
˙̄x = f (x̄, ū) (system dynamics),

x̄(τ, t) ∈ X , ū(τ, t) ∈ U , ∀τ ∈ [t, t + Tp ] (state and input constraints),

x̄(t, t) = x(t) (initial condition),

x̄(t + Tp , t) ∈ X f (terminal constraint set).

Apply to the system at time τ ∈ [t, t + δ] the optimal control action:

uMPC(τ, t) = ū∗(τ,x(t)), ∀τ ∈ [t, t + δ],

with the sampling time δ < Tp chosen such that the state measurement is accomplished.

Assumptions:

The control action has to stabilize the system around the equilibrium {xe ,ue}.
The stage cost ` : X × U → R satisfies `(x,u) > 0 ∀(x,u) ∈ X × U\{xe ,ue} and
`(xe ,ue) = 0.

The terminal cost F : X → R satisfies F (x) > 0 ∀x ∈ X\{xe} and F (xe) = 0.

Ngoc Thinh Nguyen (LCIS-Grenoble INP) NMPC with returning and bounding regions 4 June 2018 5 / 22



Design principles for NMPC stability Stability conditions

Stability conditions of NMPC design with invariant set

The recursive feasibility3 and the asymptotic (exponential) stability of the closed-loop controlled
system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

(C1) [State constraints fulfillment] Xf ⊆ X , xe ∈ Xf .

(C2) [Input constraints fulfillment] There exists a local controller uloc(x) such that
uloc(x) ∈ U , ∀x ∈ Xf .

(C3) [Positive invariant terminal set] Xf is positively invariant under uloc(x).

(C4) [Local Lyapunov function existence] The stage and terminal costs `(x,u),F (x) under
uloc(x) (i.e., ẋ = f (x,uloc(x))) satisfy:

dF (x)

dt
+ ` (x,uloc(x)) ≤ 0, ∀x ∈ Xf .

3feasibility obtained with the assumption of the first successfully executing iteration.
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Design principles for NMPC stability Stability conditions

State-of-the-art on NMPC stability with terminal constraint

Various approaches are employed in the literature for stability guarantees:

• NMPC with terminal equality constraint (Keerthi and Gilbert (1988); Rawlings and Muske
(1993))

Xf = {xe}, F (x) , 0 and uloc = 0.

• Quasi-infinite horizon NMPC (Chen and Allgöwer (1998))

Xf is an ellipsoidal invariant set under linear feedback controller.

• NMPC with polytopic invariant set (Cannon, Deshmukh, and Kouvaritakis (2003))

Xf is a polytopic invariant terminal set under linear feedback controller uloc, applied for
input-affine nonliner system.

• NMPC design employing a feedback linearization law (Simon, Löfberg, and Glad (2013))

A feedback linearization law is applied to linearize the considered nonlinear system. Then, an
NMPC controller is designed under the varying input constraint set.

• NMPC design with invariance induced by a computed-torque control law (Nguyen, Prodan, and
Lefèvre (2018b))

Xf is an ellipsoidal invariant set under nonlinear computed-torque controller uloc.
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Returning and bounding regions characterization Definitions

Returning and bounding regions

Definition: Consider a general system ẋ = f (x,u) admitting a feedback controller ub(x) and two
compact sets Rδ and BRδ with Rδ ⊆ BRδ in the state-space dimension. Then, for a predefined
δ > 0, Rδ is called returning region with time step δ and BRδ is called bounding region of Rδ iff:

x(t0) ∈ Rδ ⇒
{
x(t0 + δ) ∈ Rδ,
x(t) ∈ BRδ , ∀t ∈ [t0, t0 + δ],

for any t0 ∈ R.

Corollary:

x(t0) ∈ Rδ ⇒ x(t) ∈ BRδ , ∀t ≥ t0.

Any positive invariant set is both a returning region (with any δ ≥ 0) and a bounding region.
By considering these two distinct sets we generalize the control scheme and, arguably,
increase its performance.

0

0

Terminal point

x(0)

Terminal positive
invariant set

Returning & bounding regions
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Returning and bounding regions characterization Stability conditions

NMPC stability conditions with returning and bounding regions
The recursive feasibility and the asymptotic stability of the system ẋ = f (x,u) controlled by the
NMPC controller are guaranteed if the following conditions are satisfied:

(C1*) [State and input constraints fulfillment] BRδ ⊆ X , xe ∈ BRδ and uloc(x) ∈ U , ∀x ∈ BRδ .

(C2*) [Returning region as terminal set] Rδ serves as the terminal region Xf of the NMPC design.

(C3*) [Local Lyapunov function existence] Starting from any x ∈ Rδ, the stage and terminal costs
`(x,u),F (x) under uloc(x) (i.e., ẋ = f (x,uloc(x))) satisfy:

dF (x)

dt
+ ` (x,uloc(x)) ≤ 0.
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NMPC design for thurst-propelled vehicles Vehicle modeling

Thrust-propelled translation dynamics

Consider thrust-propelled translation dynamics (Mellinger and Kumar (2011); Nguyen et al. (2017b)):

ξ̈ = −→g + R
−→
T ,

with ξ , (x, y , z)> the position of the vehicle, −→g , (0, 0,−g)> the gravity,
−→
T , (0, 0,T )> the

normalized thrust force and R the rotation matrix of the roll-pitch-yaw XYZ rotating sequence.
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NMPC design for thurst-propelled vehicles Vehicle modeling

Thrust-propelled translation dynamics

Consider thrust-propelled translation dynamics (Mellinger and Kumar (2011); Nguyen et al. (2017b)):

ξ̈ = −→g + R
−→
T ,

with ξ , (x, y , z)> the position of the vehicle, −→g , (0, 0,−g)> the gravity,
−→
T , (0, 0,T )> the

normalized thrust force and R the rotation matrix of the roll-pitch-yaw XYZ rotating sequence.

Its state-space representation is given by:

ẋ = f (x,u) = Ax + hψ(u),

with A =

[
03×3 I 3

03×3 03×3

]
, hψ(u) =


03×1

T (cosφ sin θ cosψ + sinφ sinψ)
T (cosφ sin θ sinψ − sinφ cosψ)

−g + T cosφ cos θ

,

where x , (ξ>, ξ̇>)> ∈ R6 and u , (T , φ, θ)> ∈ R3 (i.e., thrust, roll and pitch angles).

Specifications:

The yaw angle ψ is an assumed known constant variable influencing the system.

The equilibrium point is fixed at xe = 0 and ue = [g 0 0]>.

The input u is constrained as: u ∈ U = {u ∈ R3| 0 ≤ T ≤ Tlimit , |φ| ≤ εc , |θ| ≤ εc},
with Tlimit > g the thrust limit and εc ∈ (0, π/2) the desired maximum value of the angles.
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NMPC design for thurst-propelled vehicles Feedback linearization law

Feedback linearization law

Mellinger and Kumar (2011); Formentin and Lovera (2011); Nguyen et al. (2017b)

Consider the feedback linearization law ub(u, ψ) : R3 × R→ R3 with ub , [Tb φb θb]> and the
virtual input vector u , [ux uy uz ]>:

Tb =
√

u2
x + u2

y + (uz + g)2,

φb = arcsin

 ux sinψ − uy cosψ√
u2
x + u2

y + (uz + g)2

 ,

θb = arctan

(
ux cosψ + uy sinψ

uz + g

)
.

  

 

𝒚𝒂
𝑩    

𝜃𝑟 

𝒙𝒂
𝑩  

𝜙𝑟 

𝒛𝒂
𝑩  

𝑇𝑟 
𝜓 𝑟 

If ub ∈ U , ub linearizes the nonlinear system ẋ = Ax + hψ(u) into the linear stabilizable system:

ẋ = Ax + hψ(ub(u, ψ))⇔ ẋ = Ax + Bu ⇔


ẋ = vx, v̇x = ux ,

ẏ = vy , v̇y = uy ,

ż = vz , v̇z = uz ,

with B = [03×3 I 3]>.
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NMPC design for thurst-propelled vehicles Feedback linearization law

Input constraint satisfaction with feedback linearization control

Input constraints:

u ∈ U = {u ∈ R3| 0 ≤ T ≤ Tlimit , |φ| ≤ εc , |θ| ≤ εc}, Tlimit < g , εc ∈ (0, π/2).

Lemma 1: [Bounds on virtual inputs]

By choosing three positive constants Ux, Uy and Uz such that:

Uz < g , U2
x + U2

y ≤ (−Uz + g)2 tan2 εc ,
√

U2
x + U2

y + (Uz + g)2 ≤ Tlimit ,

we have that, if |ux| ≤ Ux, |uy | ≤ Uy and |uz | ≤ Uz , then ub(u, ψ) ∈ U , ∀ψ ∈ [−π, π].

Proof sketch: |ux| ≤ Ux, |uy | ≤ Uy , |uz | ≤ Uz imply that:

Tb ≤
√

U2
x + U2

y + (Uz + g)2,

|φb|, |θb| ≤ arctan

√ U2
x + U2

y

(−Uz + g)2

 .

  

 

𝒚𝒂
𝑩    

𝜃𝑟 

𝒙𝒂
𝑩  

𝜙𝑟 

𝒛𝒂
𝑩  

𝑇𝑟 
𝜓 𝑟 
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NMPC design for thurst-propelled vehicles Feedback linearization law

Returning and bounding regions with input constraint satisfaction
Lemma 2: [Returning and bounding regions formulation]

Consider the sampling time δ of the NMPC controller, then, define three pole vector as follows:

sq , [s1q s2q ]> ∈ Sδ, q ∈ {x, y , z},

with the set Sδ =s =

[
s1

s2

] ∣∣∣∣∣
s1 < s2 < 0 (closed-loop stability)

λ2(s, δ)

1− λ1(s, δ)
≤

1− |λ4(s, δ)|
−λ3(s, δ)

(existence of returning and bounding regions)

,

λ1(s, t) =
s2es1t − s1es2t

s2 − s1
, λ2(s, t) =

es2t − es1t

s2 − s1
,

λ3(s, t) =
s1s2(es1t − es2t)

s2 − s1
, λ4(s, t) =

s2es2t − s1es1t

s2 − s1
.

−30 −25 −20 −15 −10 −5 0
−30

−25

−20

−15

−10

−5

0

s1

s
2

S0.1

Illustration of Sδ with δ = 0.1 seconds.
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NMPC design for thurst-propelled vehicles Feedback linearization law

Returning and bounding regions with input constraint satisfaction

Lemma 2: [Returning and bounding regions formulation]

Consider the sampling time δ of the NMPC controller, then, define three pole vector as follows:

sq , [s1q s2q ]> ∈ Sδ, q ∈ {x, y , z},

which ensure the existence of the returning and bounding regions.

This allows to define three pairs of Xq > 0 and Vq > 0 such that:

λ2(sq , δ)

1− λ1(sq , δ)
≤

Xq

Vq
≤

1− |λ4(sq , δ)|
−λ3(sq , δ)

,

Kpq X̃q + Kdq Ṽq ≤ Uq ,with Kpq = s1q s2q , Kdq = −s1q − s2q ,

which describe the size of the returning and bounding regions.

X̃q , X̃ (Xq ,Vq , sq , δ) = max
t∈[0,δ]

{Xqλ1(sq , t) + Vqλ2(sq , t)} ,

Ṽq , Ṽ (Xq ,Vq , sq , δ) = max
t∈[0,δ]

{−Xqλ3(sq , t) + Vq |λ4(sq , t)|} .
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NMPC design for thurst-propelled vehicles Feedback linearization law

Returning and bounding regions with input constraint satisfaction
Lemma 2: [Returning and bounding regions formulation]

Consider the sampling time δ of the NMPC controller, then, define three pole vector as follows:

sq , [s1q s2q ]> ∈ Sδ, q ∈ {x, y , z},

which ensure the existence of the returning and bounding regions.

This allows to define three pairs of Xq > 0 and Vq > 0 such that:

λ2(sq , δ)

1− λ1(sq , δ)
≤

Xq

Vq
≤

1− |λ4(sq , δ)|
−λ3(sq , δ)

,

Kpq X̃q + Kdq Ṽq ≤ Uq ,with Kpq = s1q s2q , Kdq = −s1q − s2q ,

which describe the size of the returning and bounding regions.

Then, consider two sets Rδ and BRδ defined as follows:

Rδ =

x ∈ R6

∣∣∣∣∣

|x| ≤ Xx, |vx| ≤ Vx

|y | ≤ Xy , |vy | ≤ Vy

|z| ≤ Xz , |vz | ≤ Vz

 , BRδ =

x ∈ R6

∣∣∣∣∣

|x| ≤ X̃x, |vx| ≤ Ṽx

|y | ≤ X̃y , |vy | ≤ Ṽy

|z| ≤ X̃z , |vz | ≤ Ṽz

 ,

for any constant value of ψ ∈ [−π, π], we have that:

1) ub(Kx, ψ) ∈ U , ∀x ∈ BRδ with K = −
[
diag(Kpx ,Kpy ,Kpz ) diag(Kdx ,Kdy ,Kdz )

]
;

2) Rδ and BRδ are the returning and bounding regions with time step δ under ub(Kx, ψ).
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NMPC design for thurst-propelled vehicles Feedback linearization law

Proof of Lemma 2 [Returning & bounding regions formulation]

For all x ∈ BRδ , u = Kx, with K = −
[
diag(Kpx ,Kpy ,Kpz ) diag(Kdx ,Kdy ,Kdz )

]
leads to:

uq = Kpqq + Kdq vq ⇒ |uq | ≤ Kpq |q|+ Kdq |vq | ≤ Kpq X̃q + Kdq Ṽq ≤ Uq , q ∈ {x, y , z}.

ub(Kx, ψ) ∈ U , ∀ψ ∈ [−π, π] by Lemma 1 [Bounds on virtual inputs].

ub(Kx, ψ) linearizes the nonlinear system into:

ẋ = Ax + hψ(ub(Kx, ψ))⇔ ẋ = AKx⇔


ẋ = vx, v̇x = −Kpxx− Kdxvx,

ẏ = vy , v̇y = −Kpy y − Kdy vy ,

ż = vz , v̇z = −Kpz z − Kdz vz .

Thus, Rδ and BRδ are the returning and bounding regions with time step δ.

Illustrative example:
Tlimit = 2g , εc = 10◦.
Ux = Uy = Uz = 1.0875.
sx = sy = sz = [−16 − 0.5]>.
Xx = Xy = Xz = 0.066.
Vx = Vy = Vz = 0.033.

X̃x = X̃y = X̃z = 0.0666.

Ṽx = Ṽy = Ṽz = 0.033.

x0 =

[
X −

X

2

X

2
V − V V

]>
.
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NMPC design for thurst-propelled vehicles NMPC design

Stability conditions of NMPC design

Consider returning, Rδ and bounding, BRδ regions with time step δ under uloc(x):

(C1*) [State and input constraints fulfillment] BRδ ⊆ X , xe ∈ BRδ and uloc(x) ∈ U , ∀x ∈ BRδ .

(C2*) [Returning region as terminal set] Rδ serves as the terminal region Xf of the NMPC design.

(C3*) [Local Lyapunov function existence] Starting from any x ∈ Rδ, the stage and terminal costs
`(x,u),F (x) under uloc(x) (i.e., ẋ = f (x,uloc(x))) satisfy:

dF (x)

dt
+ ` (x,uloc(x)) ≤ 0.

Proof steps:
For the thrust-propelled translation dynamics (ψ is a known constant), we have that:

Conditions (C1*) and (C2*) are satisfied by Lemma 2 [Returning and bounding regions
formulation]:

∗ Consider uloc(x) , ub(Kx, ψ), with the corresponding Rδ and BRδ .

For solving condition (C3*) :

∗ `(x,u) is chosen such that ` (x,ub(Kx, ψ)) ≤ x>Q∗x, ∀x ∈ BRδ , ∀ψ ∈ [−π, π].

∗ F (x) , x>Px where P is an unique positive definite symmetric matrix solution of:

A>K P+PAK + Q∗ = 0.

⇒
dF (x)

dt
+ ` (x,uloc(x)) ≤ x>(A>K P + PAK )x + x>Q∗x = 0.
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NMPC design for thurst-propelled vehicles NMPC design

Stage cost and the upper bound for solving condition (C3*)

By considering xe = 0 and ue = [g 0 0]>, the stage cost is given as:

`(x,u) = x>Qx + rT (T − g)2 + rφ tan2 φ+ rθ tan2 θ,

where Q ∈ R6×6 is positive definite and rT , rφ, rθ are all positive scalars.

Lemma 3: [Bounds on the stage cost]

For all x ∈ BRδ , the stage cost `(x,ub(Kx, ψ)) is bounded as follows:

`(x,ub(Kx, ψ)) ≤ x>Q∗x, ∀ψ ∈ [−π, π],

where the positive definite matrix Q∗ ∈ R6×6 is given as:

Q∗ = Q + 3rTK
>K + (rφ + rθ)Γ,

with the weighting matrix Γ ∈ R6×6, Γ =
1

(−Uz + g)2
K>xyKxy , with

Kxy =
[
diag(Kpx ,Kpy , 0) diag(Kdx ,Kdy , 0)

]
.

Ngoc Thinh Nguyen (LCIS-Grenoble INP) NMPC with returning and bounding regions 4 June 2018 16 / 22



NMPC design for thurst-propelled vehicles NMPC design

Proof sketch of Lemma 3 [Bounds on the stage cost]

With |uz | ≤ Uz < g , the feedback linearization law ub(u, ψ) is bounded as follows:

(Tb(u)− g)2 =
(√

u2
x + u2

y + (uz + g)2 − g
)2
≤ 3(u2

x + u2
y + u2

z ),

tan2 (φb(u, ψ)) ≤
u2
x + u2

y

(−Uz + g)2
, ∀ψ ∈ [−π, π], and similar result for θb(u, ψ).

Employing u = Kx (i.e., uq = Kpqq + Kdq vq , ∀q ∈ {x, y , z}), then, transform the results
into quadratic formulations. �
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NMPC design for thurst-propelled vehicles NMPC design

Summary of the NMPC design procedure

Step 1) Using Lemma 1, choose the saturation limits Ux,Uy and Uz in order to obtain the
bounds on the virtual inputs of the feedback linearization law.

Step 2) Using Lemma 2, choose sx, sy and sz within the set Sδ. Then, find three pairs Xq ,Vq

with q ∈ {x, y , z} to obtain the returning region Rδ which is then employed as the
terminal region Xf , hence, satisfying conditions (C1*) and (C2*).

Step 3) Choose the positive definite matrices Q ∈ R6×6 and three positive scalars rT , rφ, rθ in
order to obtain the stage cost `(x,u).

Step 4) Choose the prediction horizon Tp based on the computational constraint of the platform
(e.g., the processing speed requirement).

Step 5) Using Lemma 3, define the matrix Q∗, then, solve the Lyapunov function for P in order
to obtain the terminal cost F (x) satisfying condition (C3*).
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Comparisons and simulation results

Simulation scenarios and tuning parameters

Crazyflie 2.0 nano-quadcopter: thrust limit Tlimit = 2g and maximum angle values εc = 10◦.

Fixing the NMPC sampling time δ = 0.1 seconds, two scenarios are considered as follows:

Scenario 1: Stabilizing the thrust-propelled translation dynamics with ψ = 0 using the proposed
NMPC controller.

Table: Parameters of the proposed NMPC controller.

Values
Ux = Uy = Uz 1.0875, 1.0875, 1.0875

sx = sy = sz
[
−16 − 0.5

]>
Xx = Xy = Xz 0.066
Vx = Vy = Vz 0.033

Q 10I 6

rT = rφ = rθ 1
Tp 1 second

Q∗
[

diag{204, 204, 202} diag{399, 399, 396}
diag{399, 399, 396} diag{834, 834, 827}

]
P

[
diag{16.73, 16.73, 16.68} diag{12.73, 12.73, 12.63}
diag{12.73, 12.73, 12.63} diag{25.77, 25.77, 25.55}

]
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Comparisons and simulation results

Simulation scenarios and tuning parameters

Crazyflie 2.0 nano-quadcopter: thrust limit Tlimit = 2g and maximum angle values εc = 10◦.

Fixing the NMPC sampling time δ = 0.1 seconds, two scenarios are considered as follows:

Scenario 1: Stabilizing the thrust-propelled translation dynamics with ψ = 0 using the proposed
NMPC controller.

Scenario 2: Stabilizing thrust-propelled translation dynamics with ψ = 0 using the quasi-infinite
horizon NMPC controller (Chen and Allgöwer (1998)) with the ellipsoidal terminal region
Ωα = {x ∈ R6| x>PqMx ≤ α}.

Table: Parameters of the quasi-infinite horizon NMPC controller.

Values
QqM 10I 6

RqM I 3

Tp 1 second

KqM

 0 0 −4 0 0 −4
0 4/g 0 0 4/g 0
−4/g 0 0 −4/g 0 0


κ 1

PqM

[
diag{65.08, 65.08, 73} diag{17.54, 17.54, 21.5}

diag{17.54, 17.54, 21.5} diag{7.55, 7.55, 11.5}

]
α 0.0035 (largest possible)
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Comparisons and simulation results

Simulation results with NMPC sampling time δ = 0.1 seconds

Terminal regions Rδ and Ωα (approximated
illustration) and trajectories (x, vx), (y , vy ),
(z, vz ) under two scenarios.

Table: Comparisons between two scenarios.

Scenario 1 Scenario 2

Volume Xf > 13, 600% 100%
Convergence

time (seconds) 3 2.5
Computing

time (seconds) < 0.1 > 0.25

Yalmip (Löfberg (2004)), IPOPT (Wächter and

Biegler (2006)), Matlab R2015a, Intel(R)
Core(TM) i7-4720HQ CPU @2.60 GHz.
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Conclusions and future developments

Conclusions and future developments

Conclusions:

Characterization of returning and bounding regions with a specific time step.

NMPC design guaranteeing recursive feasibility and asymptotic stability by employing the
returning and bounding regions.

NMPC design for stabilizing the thrust-propelled translation dynamics by using the nonlinear
feedback lineariziation law as the local controller.

Extensive simulations and comparisons with quasi-infinite horizon NMPC controller.

Future developments:

Real implementation of the proposed NMPC controller on the Crazyflie 2.0 nano-quadcopter
platform.

NMPC design for stabilizing the class of systems possessing a computed-torque control law
employing the returning and bounding regions (see also Nguyen et al. (2018b)).

NMPC design guaranteeing recursive feasibility and stability with an attractive terminal
region.
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