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[HEITLEEE  Motivation

Motivation

Navigation through multi-obstacle environments is one of the most challenging and intensively
studied problem in the control and robotics communities.

The main difficulty: the non-convexity of the feasible regions in the motion space and
consequently the lack of connectivity in the solution space.

State-of-the-art methods:

@ optimization-based (Chen et al. 2016; Janegek
et al. 2017; Szmuk et al. 2017)

@ sampled(graph)-based (LaValle 2006; Weiss
et al. 2017)

Main ideas:

o consider efficient mixed-integer descriptions of the non-convex region(s)

@ generate feasible paths based on space partitioning
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Generic control strategy

Model Predictive Control (MPC) (Mayne et al. 2000; Maciejowski 2002)

N,—1 N,—1
J(x,u) = <||Xk+/v,,|k — Zeetikllp 20 IXusik — Reetikllg + 0 ||A”k+/|k”2R>
= =

Ingredients:

@ quadratic/(non)linear optimization
criterion

o (internal) model
@ state and input constraints
e magnitude constraints

e obstacle avoidance constraints

Xppl|k = AXkpr—1)k + Bugsi—1jk,
Xkri|k € X5 Uk €U,
Xeq 11k E P

X;
@ reference trajectory/path '
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Zonotopes
Zonotopic representation

Idea: Use zonotopes to characterize the regions of interest (Althoff et al. 2010; Stoican et al. 2013)

A zonotope is a centrally symmetric polytope and can
be defined as a Minkowski sum of line segments (Kiihn
1998)

Ng
Z={c+> &g |l <1}
i=1
Z=2(G,c)={GE+cle eR™, []loe <1}
Several properties are of interest (Fukuda 2004). w0

@ are closed under linear transformation and under
Minkowski sum '

@ are symmetric,w.r.t. their centers B

@ their volume has an explicit formulation (Gover
et al. 2010)

They are increasingly used in control applications due to their numerical robustness and simplicity, well-suited
for large-scale problems (Althoff 2015).
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Obstacle avoidance [FANSTEY

Zonotopic over-approximations |

In order to efficiently over-approximate the given shape of the obstacles, we can parametrize the
zonotopes (Althoff et al. 2010), with respect to some fixed direction (an a priori given matrix G € RYX™):

Z(GAj,¢), j=1...No.
where Ay is a diagonal matrix. The k-th diagonal element is noted as §j, .

Consequences: 3

@ the generated half-spaces share
common normal vectors b

irrespective of the scaling factors.

@ the resulting hyperplanes are
parallel with each other

o simplified formulation Ll
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Obstacle avoidance [FANSTEY

Zonotopic over-approximations Il

Goal: Provide adequate zonotopic over-approximations for a multi-obstacle environment:

-15

“10f L

14-12-10-8 =6 -4 -2 0 2 4 6 8 10 12 14

#P | #H | v*(N) | tyw(sec) | #Zp
7 34 419 9.22 75

D.loan,l.Prodan, S.Olaru, F.Stoican,S.Niculescu

Navigation in a multi-obstacle environment

(4j,¢)" =arg min C(A, ¢))
Ajs

s.t. P C Z(GAJ',CJ')

Measures C(4Aj, ¢j):

i) Vol(Z(GAj, ¢j)) -zonotope volume
ii) 16|, -generator sum (> gkdj,)
k=1

i) [|d]|,, -largest generator (kLnlaxmgkéjk)
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Obstacle avoidance [FANSTEY

lllustrative example for zonotopic representation |

N
P
o P
~—

Py
-14-12-10-8 =6 -4 =2 0 2 4 6 8 10 12 14
X

15

Figure: Volume with G = Gj.

1 0 O
0 1 0
0 0 1
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Obstacle avoidance [FANSTEY

lllustrative example for zonotopic representation |l

l ‘ Measure ‘ G ‘ tsol ‘ #H ‘ 5 (N) ‘ L«:{ﬁv/\;) ‘ tyx () (s€c) ‘ #Xp ‘ \% ‘ &Y (%) ‘
Gy 8,13 42 505 20,53 9,53 197 376,98 71,7
H5H1 Gy 8,02 28 225 -46,30 3,81 101 410,07 86,78
Gs | 8,27 42 534 27,45 10,09 167 368,93 68,04
Gy 8,19 42 441 5,25 8,19 374 897,92 308,98
d=2 H(;Hoo Gy 8,01 28 225 -46,30 3,91 175 583,33 165,69
Gs | 8,19 42 441 5,25 8,19 374 897,92 308,98
Gy 9,40 42 510 21,72 9,66 199 368,41 67,8
Vol Gy 9,19 28 225 -46,30 3,75 101 410,07 86,78
Gs 9,30 40 530 26,49 10,27 169 374,99 70,8
1151l Gy | 9,82 60 8400 | -85,31 105,98 934 | 1857,46 | 323,56
1 Gs | 10,50 | 120 | 62480 9,26 1145,09 4952 | 2019,34 360,47
d=3 15 Gy 9,71 60 8000 -86,01 100,22 1127 26233 498,19
oo Gs | 10,59 | 120 | 51396 | -10,12 932,12 9432 | 5852,55 | 1234,56
Vol Gy | 11,02 60 8400 -85,31 105,07 934 1857,46 323,56
Gs | 11,79 84 24528 | -57,11 413,07 2218 1908,2 335,13

The fixed directions/Generators:
1 0 0 1 0
cocllp S B I 0 Apee]p b
0 0 1 0 0
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Obstacle avoidance [EFASNSEIT

polytopic vs. zonotopic representation

Obstacle avoidance:

step 150

X2

Xz

JEI0Y:3 N N N A U N N G I S N S
—14-12-10-8 =6 =4 -2 0 2 4 6 8 10 12 14

X1

s AT I L
PTHo12-10 -8 6 —4 —2 0
x|

Figure: Polytopes P. Figure: Zonotopes Z.

Topology | Ngoar | tgoai(sec) | tworst (sec)
d=2 P 143 11.64 0.22
Z 146 10.07 0.18
d—3 P 98 83.87 0.81
Z 132 57.07 0.42

Table: MPC parameters: N, = 10, P = 10hg, Q@ = hq, R = Ig.

Navigation in a multi-obstacle environment Thursday, June 13", 2019 8 / 19
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Obstacle avoidance [FANSTEY

Measure: | o ||y Measure: Volume
15 15
— Z
—_
101 va /\ ™ 0t
AN b
51 Bl
Py
A o0F 2 of
Fs s C—\ Py
—5F l 5
—10f ~lof
Py Py
BT s 6 420 2 4 6 8 1012 1 P Tl-12-10 -8 6 8 10 12 14
X x
G =G G=G;

“How can we approximate the obstacles with zonotopic sets while, simultaneously, safeguarding
the feasible paths of the initial problem?” J
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el
Zonotopic approximations with corridors

Proposed solution: The inclusion of a separation hyperplane (Boyd et al. 2004) in the optimization
problem: Hsep = {x € RY hs—gpx = Ksep }, With its corresponding half-spaces RY and Reep-

sep
@ adding a linear constraint: Z(GA, c) C stgp @ adding generators spanning Hsep
@ Shortcoming: usually, infeasible @ Shortcoming: no inclusion monotonicity
initial
15
Z

Theorem
®

ol In RY, the maximum number of joint

X2

Py — constraints for corridors with feasibility
5 . guarantees is d + 1. ¢
~10}
Py
BRI s 6120 2 1 6 8 10121

X
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Zonotopic approximations with corridors

Proposed solution: The inclusion of a separation hyperplane (Boyd et al. 2004) in the optimization
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sep sep*
@ adding a linear constraint: Z(GA, c) C st;p @ adding generators spanning Hsep
@ Shortcoming: usually, infeasible @ Shortcoming: no inclusion monotonicity

with separation constraints

50 Theorem
s o In RY, the maximum number of joint
constraints for corridors with feasibility
st guarantees is d + 1. ¢
~10f
PT14-12-10-8 —6 —4 -2 0 2 4 6 8 10 12 14

x1
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(RS EVENENIS  Space Partitioning

Space Partitioning

No
Idea: Provide a partitioning of the navigation space w.r.t. the obstacles P = |J P;
i=1

Definition

A family of sets {X;};cz verifying:
) X=Uk, X,
i) int(X;)int(X;) =0,Vi #j €T,
i) PrCint(X;),¥i € {1..., No}

is called a partition of X induced by the
obstacles P.
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[l BECEEWCIELIL Space Partitioning

An intuitive solution

Idea: As P; N P; = (,Vi # j, the separating hyperplanes(Boyd et al. 2004) are candidates for the
supporting hyperplanes of X; D P;

15

10

> Alternatives:

0 @ Generalized Voronoi Diagram (Afonso et al.

2013) or (Sugihara 1993)
- @ grid of square/cubic cells (Wang et al. 2015)
~10
@ convex lifting (Nguyen et al. 2018)

-15

15 10 5 0 5 10 15

X # UM, X

Nguyen, N. A, Gulan, M., Olaru, S., Rodriguez-Ayerbe, P. (2018). Convex lifting: Theory and control applications. IEEE Transactions on Automatic
Control, 63(5), 1243-1258.
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Convex lifting-overview
Definition (Convex lifting Nguyen et al. 2018)
For a polyhedral partition {X;};cz of a domain X, a piecewise affine lifting described by the
function:
z(x) = a; x + b, x € X;,

is called a convex (piecewise affine) lifting, if z(x) is continuous and convex over partition
{Xi}tiez of X. ¢

N, N,
mip ;J(a,,b,),;[a, b M
st. al v+ b < M,Yv e V(X),Vi, ) -

al v+ b > al v+ bi+e, Vv e VX)) \V(X),Vi#j,

al v+ b =al v+ b,VveV(X;NX),Vi#j. ‘

LS ER—T) =5 0 5 10 15

P:{m €RIL: [a] —1] m g—bi,iez}.
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(RS EVENENIS  Space Partitioning

Convex lifting-overview

Definition (Convex lifting Nguyen et al. 2018)

For a polyhedral partition {X;};cz of a domain X, a piecewise affine lifting described by the

function:
z(x) = a; x + b, x € X;,

is called a convex (piecewise affine) lifting, if z(x) is continuous and convex over partition

{Xi}iEI of X. ‘
( N, N, R ) 15
I CTIE MO

st al v+ b < M,Yv e V(P:),Vi, .
aj v+ bi > al v+ b+ e, Vv € V(P),Vi # J,

P:{m €RIL: [a] —1] m g—bi,iez}.
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Convex lifting-overview
Definition (Convex lifting Nguyen et al. 2018)

For a polyhedral partition {X;};cz of a domain X, a piecewise affine lifting described by the

function:
z(x) = a; x + b, x € X;,

is called a convex (piecewise affine) lifting, if z(x) is continuous and convex over partition

{Xi}iEI Of X. ‘
e N N )
. - N LT aj
mp > Jarb) =[] [2] .
i=1 i=1 0.05
st. a] v+ b < M,Yv e V(P),Vi, o
a(_—rv_;'_b’.Zaj_-rv+bj+e,VVEV(Pi),Vi¢j, Z:
L ) 20

O

?

[7>— {m eRH: [aT —1] m < —by, iez} ]
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Space Partitioning
From Lifting to Partitioning

projections of the facets on X

P {[ﬂ e R [o] — 1] m <—b i€ I}. (Xbier

10
0.06 5

0.05
0

0.04
0.03 -5

0.02
—10

0.01
15

20 T
0

0 ///-20 A T T 0 5 10 15
0
20

-20 40
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[l BECEEWCIELIL Space Partitioning

Space partitioning
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Obstacle avoidance Geometric path generation

Geometric path generation
Idea: Define a graph ' = (N, &, f), f : £ — R, based on the partition {X;};=1.n,.
o N = {V(Xj)}i=tn,

o & - the facets of the partition cells.

sody

o 7 ‘ J
5+

—10

—15 —10 =5 0 5 10 15

Next steps:
@ connect xp, xr € Cx(P) to I’

@ run a graph search algorithm, e.g. Dijkstra’s Algorithm (Karaman et al. 2011)
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Geometric path generation
Monte Carlo study for feasible path generation

Computing times w.r.t. the number of obstacles

6 -
& 4 . !
S 9t H
0 . | |
6 10 13 20 31
10
75 1 ]
5 5F .
254 '
0 | | |
6 10 13 20 31
0.6
2 04 r $
< 024 : *
O | | | |
6 10 13 20 31
—2
. 410
& 3E i 1 H
2 2
£} 2 1 ’
6 10 13 20 31

number of obstacles
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Obstacle avoidance Geometric path generation

lllustrative example for obstacle avoidance

15

10 -

10

-14-12-10-8 -6 -4 -2 0 2 4 6 8 10 12 14

—15

o {Xi}i=1n, and T o Path(x;, xr)

@ “local” zonotopic over-approximation o MPC with N, =7
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Conclusions

Conclusions

Conclusions:

o we studied the benefits and difficulties of choosing a particular family of sets (parametrized
zonotopes) for the non-convex feasible domain representation

@ we introduced a partitioning procedure of the workspace based on convex lifting

@ we propose a navigation strategy with obstacle avoidance guarantees using local zonotopic
approximations of the obstacles

Future directions:

o extension of the preliminary results for more complex scenarios (e.g., mobile obstacles)
@ improvements of the MPC problem (feasibility etc.)

o develop a complete navigation strategy based on space partitioning
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Conclusions

Zonotopic sets — properties

Several properties are of interest (Fukuda 2004).

Let Z; = Z(G17C1) CR" Z; = Z(Gz,CQ) C R"

@ are closed under linear transformation: RZ(Gy, ¢1) = Z(RGy, Rey);
@ are closed under Minkowski sum: Z(G1,¢1) ® Z(G2,c2) = Z( [G1 Gz} ,c1 +¢c2);
@ are symmetric, w.r.t. their center: —Z; = —Z{G1,¢1} = Z{G1, —c1}

@ their volume has an explicit formulation (Gover et al. 2010):
Vol(Z2(G,c)) = Zl§j1<j2-..jd§m |det(Gfl~~Jd)|

@ their corresponding half-space representation (Althoff et al. 2010):

Z(G,c) = (| {xeR:|h(x—0o) <k},

1< <.-dg—1S<m

hilg, Vi€ {i a1}, ki= > ‘h,-rgj,‘
Jrg{in-da—1}

Back to
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