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1. Introduction: problem definition

This article presents:

• A methodology for controlling the continuous part of the transient phases of

Liquid-Propellant Rocket Engines (LPRE):

• LPRE are complex thermodynamic systems  nonlinear model-

based approach based on fluid mechanics.

• Control goal in this paper: 

• End-state tracking in main engine variables.

• Verification of operational constraints during transient.

• Controller:

• Nonlinear preprocessor for reference generation.

• Linear MPC with robustness considerations.

• Progress within the research trend of improving the control performance 

and robustness of these devices.
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1. Introduction: context

Global trend for affordable access to space

Reusable launchers+ rocket engines

• Reusability race after semi-reusable Space Shuttle

o Demanding control robustness requirements: multi-restart and 

thrust-modulation features. [1]

o Classical steady-state multivariable and linear control  reduced 

throttling envelope (70%-120% thrust)too narrow for 

reusable engines [1] (30% expected in Prometheus).

SpaceX Blue Origin PLD Space Airbus DS Adeline
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1. Introduction: state of the art

• Most common approaches in literaturelinearised models about 

operating points, for synthesising steady-state controllers:

– PID based [11]. MIMO are decoupled into dominant SISO 

subsystems.

– Off-line optimisation: [4].

– Incorporation of:

• Nonlinear techniques [6]

• Hybrid techniques [10].

• Robust techniques [15].

• Reconfiguration control [10].

• No publications considering steady-state and transients, reviewed

in [13].
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1. Introduction: objectives

• Enhance Liquid-Propellant 

Rocket Engines (LPRE) control. 

• Main target  control strategy 

during their transient phases, 

currently carried out as 

sequences of events in open loop
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1. Introduction: objectives

– Goals: 

• Final-reference tracking at the end of start-up transient, via tuning of 

continuous controls (valves).
– Main variables to track: combustion-chamber pressure (pCC) and oxidiser-to-fuel mixture ratios 

(MR).

• Constraints verification (on states and control).

• Robustness to parameters and initial-conditions variations and to

perturbations.

• Constrained enough to consider trajectory tracking unnecessary.
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2. Modelling

1st steps: development of simulator and state-space models (in [12])

• T-RETM library: Vulcain simulator.
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2. Modelling

• Engine case study: retired Vulcain 1 (AG 1996-2009) with biased parameters

– Gas-generator cycle (GG), LOX/LH2, bi-turbopump.

– Actuators: 5 continuously-controllable valves (VCH, VCO, VGH, VGO and VGC), 1 

binary igniter (iCC) and 1 binary starter (iGG).

– Valve angles α varied to control chamber pressure 𝑝𝐶𝐶 and mixture ratio 𝑀𝑅 =
ሶ𝑚𝑜𝑥

ሶ𝑚𝑓𝑢
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2. Modelling

Simulator Global state-space model

All equations joined

via Maple

12 states 5 

continuous

inputs

2 discrete

inputs

Translation into a state-space model

Greater tracking

relevance
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2. Modelling

Simulator

• Full complexity

Complex
nonlinear state-
space fc

• 12 states

• Cumbersome equations

Simplified
nonlinear state-
space fs

• 12 states

• More tractable and 
linearisable

Linearised model

• After sequential
events

• About end state

4 stages of 

modelling:
- non-dimensional

- all need Δt=10-5 s

[12]
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3. Controller design

Model-Predictive Control (MPC):

 Constraints can be well defined

and respected with this family of 

approaches.

 Robustness can also be

handled.

 Drawback: computational time, 

due to online computation of 

control law.

 Quasi-infinite horizon: with

terminal-set constraint [3] Chen 

and Allgöwer. The MPC controller

drives the system to an end set, 

where a simple fictitious

controller ensures stability and 

reachability.

[3], Allgöwer and Müller

M. Behrendt CC BY-SA 3.0
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3. Controller design

Piecewise-constant 

control action at 

Δt=10-2 s

Complex

simulator at 

Δt=10-5 s

• Reference generator: reconstruction of whole state from input configuration (4 data).

• Least squares with complex NLSS fc at equilibrium (lsqnonlin MATLAB).

• MPC:

 Optimisation NL under constraints with IPOPT [16].

 ∆𝑡 = 10−2𝑠, Np = 10∆𝑡, Nu = 5∆𝑡
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3. Controller design

• Reference generator: reconstruction of whole state from input command from launcher (4 data).

• Least squares with complex NLSS fc at equilibrium (lsqnonlin MATLAB).

• Forced by the unavailability of analytic solution.

• Verification of static mixture ratios.
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3. Controller design

• Standard MPC (with integrator term):
– Quadratic cost function, with terminal-cost term:

• Robust MPC:
– Minimax problem: worst-case scenario for given

perturbation w [9]:

– Minimax optimisation too costly rewriting as min of 

scalar 𝛾 ∈ ℝ+ for given perturbation cases 

(equivalent epigraph formulation) [5]

– Smooth convex NLP (nonlinear programme).

 Constraints: 

 State and control bounds [7]

 Linear MR+ actuators ( ሶ𝑢𝑚𝑎𝑥) 

inequalities.

 Linear dynamics.

 Nonlinear for terminal region [3].

 Integrator dynamics [14]

 Matrices A, B at reference end point, 

to converge to xr=0 in the linear

case.

𝑤𝑖,𝑘 selected according to eigenvectors of 𝐴𝑑 [2,17]

I = {1,2,3}

𝑄, 𝑅 optimised via black-box Kriging [8] 
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4. Analysis of results

• Results of robust MPC for a set perturbed cases.

 MR constraints relaxed at beginning, due to 

initial conditions outside feasible area.

Tracking results in pCC for 

 pCC,r = 1 (nominal)

 pCC,r = 0.7 (minimum)

 pCC,r = 1.2 (maximum)

Indicator pCC tracking error (%) MR tracking errors (CC, GG, PI) 

(%)

Overshoot (% in pCC)

Operating point OL CL OL CL OL CL

70% 2,8 0,26 2,58; 1,31; 2,84 1,38; 0,69; 0,85 15,1 11,46

100% 0,25 0,26 0,17; 1,39 1,43 0,01; 0,05; 0,3 6,31 5,04

120% 0,34 0,67 3,18; 1,23; 3,41 1,37; 0,59; 1,64 3,34 4,04
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4. Analysis of results

• PID and LQR achieve tracking, but MPC also ensures

constraints verification :
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5. Conclusion

• Evolving operating requirements of pump-fed rocket engines, currently 

related to reusability scenarios  force the improvement of their 

control algorithm, in OL during transients.

• Control of continuous phase of LPRE transients:

– Full-state reference generation via complex nonlinear state-space model.

– Linear MPC with integral action: end-state tracking while verifying constraints.

• Robustness considerations for a given set of perturbation scenarios.

• Perspectives:

– Investigation of other ways of posing robustness globally.

– Trajectory generation and tracking.

– Extensive validation  and sensitivity study.
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Thank you for your attention.

Any questions or suggestions?
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Backup slides: State-space model
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Backup slides: Vulcain NL model f(x) NL Ax L

f(x)u NL 
affine

f(x,u) NL 
non-affine

k
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Backup slides: Vulcain NL model f(x) NL Ax L

f(x)u NL 
affine

f(x,u) NL 
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