On the use of a feedback linearization local controller for the terminal region of an NMPC scheme

Ngoc Thinh Nguyen, Ionela Prodan, Laurent Lefèvre

Univ. Grenoble Alpes, Grenoble INP, LCIS, F-26000, Valence, France,
Email: \{ngoc-thinh.nguyen, ionela.prodan\}@lcis.grenoble-inp.fr

June 13th 2019
Experimental platform for thrust propelled vehicles

Experimental room equipped with the Loco Positioning system

Crazyflie 2.0 with Loco Positioning deck

Two Way Ranging radio message

Input message \(\{T_r, \phi_r, \theta_r, \dot{\psi}_r\} \)

Feedback \(\{\xi, \eta\} \)

\(\times 6 \)

Loco Positioning node

Crazyflie client

Crazyradio PA USB radio dongle

Ionela Prodan (LCIS-Grenoble INP)
Nonlinear Model Predictive Control in continuous-time

Rawlings and Muske (1993); Chen and Allgöwer (1998); Mayne et al. (2000); Mayne (2014)

Solve the open-loop optimal control problem at time t using the measured state $x(t)$ and the prediction horizon T_p:

$$
\min_{\bar{u}(\cdot)} \int_t^{t+T_p} \ell(\bar{x}(\tau, t), \bar{u}(\tau, t)) \, d\tau + F(\bar{x}(T_p, t))
$$

subject to:

$$
\begin{cases}
\dot{x} = f(x, u) \text{ (system dynamics)}, \\
x(\tau, t) \in \mathcal{X}, \ u(\tau, t) \in \mathcal{U}, \ \forall \tau \in [t, t + T_p] \text{ (state and input constraints)}, \\
x(t, t) = x(t) \text{ (initial condition)}, \\
x(t + T_p, t) \in \mathcal{X}_f \text{ (terminal constraint set)}.
\end{cases}
$$

Apply to the system at time $\tau \in [t, t + \delta]$ the optimal control action:

$$u_{\text{MPC}}(\tau, t) = \bar{u}^*(\tau, x(t)), \ \forall \tau \in [t, t + \delta],$$

with the sampling time $\delta < T_p$ chosen such that the state measurement is accomplished.

Assumptions:

- The control problem is to stabilize the system around the equilibrium $\{x_e, u_e\}$.
- The stage cost $\ell : \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ satisfies $\ell(x, u) > 0 \ \forall (x, u) \in \mathcal{X} \times \mathcal{U} \setminus \{x_e, u_e\}$ and $\ell(x_e, u_e) = 0$.
- The terminal cost $F : \mathcal{X} \to \mathbb{R}$ satisfies $F(x) > 0 \ \forall x \in \mathcal{X} \setminus \{x_e\}$ and $F(x_e) = 0$.
Stability conditions of NMPC design with invariant set

The recursive feasibility\(^1\) and the asymptotic (exponential) stability of the closed-loop controlled system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

(C1) [State constraints fulfillment in \(\mathcal{X}_f\)] \(\mathcal{X}_f \subseteq \mathcal{X}, \ x_e \in \mathcal{X}_f\).

(C2) [Input constraints fulfillment in \(\mathcal{X}_f\)] There exists a local controller \(u_{\text{loc}}(x)\) such that \(u_{\text{loc}}(x) \in \mathcal{U}, \ \forall x \in \mathcal{X}_f\).

(C3) [Positively invariant terminal set] \(\mathcal{X}_f\) is positively invariant under \(u_{\text{loc}}(x)\).

(C4) [Local Lyapunov function existence] The stage and terminal costs \(\ell(x, u), F(x)\) under \(u_{\text{loc}}(x)\) (i.e., \(\dot{x} = f(x, u_{\text{loc}}(x))\)) satisfy:

\[
\frac{dF(x)}{dt} + \ell(x, u_{\text{loc}}(x)) \leq 0, \ \forall x \in \mathcal{X}_f.
\]

\(^1\)feasibility obtained with the assumption of the first successful iteration.
Illustration of recursive feasibility property

\[x \in \mathbb{R}, \ u \in \mathcal{U} \subset \mathbb{R} \]

\[x(0) \]

\[t = 0 \]
\[T_p = 3\delta \]

\[x_e \]

\[u_e \]

\[0 \delta \]
\[2\delta \]
\[3\delta \]
\[4\delta \]
\[5\delta \]

Time
Various approaches are employed in the literature for stability guarantees:

- **NMPC with terminal equality constraint** (Keerthi and Gilbert (1988); Rawlings and Muske (1993))

 \[\mathcal{X}_f = \{ x_e \}, \quad F(x) \triangleq 0 \text{ and } u_{loc} = 0. \]

- **Quasi-infinite horizon NMPC** (Chen and Allgöwer (1998))

 \[\mathcal{X}_f \] is an ellipsoidal invariant set under linear feedback controller.

- **NMPC with polytopic invariant set** (Cannon, Deshmukh, and Kouvaritakis (2003))

 \[\mathcal{X}_f \] is a polytopic invariant terminal set under linear feedback controller \(u_{loc} \), applied for input-affine nonlinear system.

- **NMPC design employing a feedback linearization law** (Simon, Lofberg, and Glad (2013))

 A feedback linearization law is applied to linearize the considered nonlinear system. Then, an NMPC controller is designed for the resulted linear system under the varying input constraints.

Can we enlarge the stabilizing terminal set in NMPC by using a nonlinear local controller?

If so, under what limitations and with what performances?
State-of-the-art on NMPC stability with terminal invariant set

Various approaches are employed in the literature for stability guarantees:

- **NMPC with terminal equality constraint** \((\text{Keerthi and Gilbert (1988); Rawlings and Muske (1993)})\)

 \[\mathcal{X}_f = \{ x_e \}, \quad F(x) \triangleq 0 \text{ and } u_{loc} = 0. \]

- **Quasi-infinite horizon NMPC** \((\text{Chen and Allgöwer (1998)})\)

 \(\mathcal{X}_f\) is an ellipsoidal invariant set under linear feedback controller.

- **NMPC with polytopic invariant set** \((\text{Cannon, Deshmukh, and Kouvaritakis (2003)})\)

 \(\mathcal{X}_f\) is a polytopic invariant terminal set under linear feedback controller \(u_{loc}\), applied for input-affine nonliner system.

- **NMPC design employing a feedback linearization law** \((\text{Simon, Lofberg, and Glad (2013)})\)

 A feedback linearization law is applied to linearize the considered nonlinear system. Then, an NMPC controller is designed for the resulted linear system under the varying input constraints.

- **NMPC design with invariance induced by a computed-torque control law** \((\text{Nguyen, Prodan, and Lefèvre (2019b)})\)

- **NMPC design for quadcopter system with invariance induced by a feedback linearization control law** \((\text{Nguyen, Prodan, and Lefèvre (2019a)})\)

 \(\mathcal{X}_f\) is an ellipsoidal invariant set under nonlinear feedback linearization controller \(u_{loc}\).
Highlights

- NMPC particularized for systems which admit a feedback linearization law which linearizes the controlled system into some double integrator systems.

- Construction of an ellipsoid, invariant and constraint admissible set under the feedback linearization law.

- Upper bound of the feedback linearization law described in terms of the state within the invariant set obtained by using Taylor’s theorem and worst-case guarantees.

- The invariant set is employed as the terminal constraint set to guarantee the (nominal) closed-loop stability and recursive feasibility of the NMPC scheme.

Outline

1. On the use of a computed-torque control law in an NMPC scheme
2. A stabilizing NMPC design for thrust-propelled vehicles dynamics
3. Conclusions and future developments
Outline

1. On the use of a computed-torque control law in an NMPC scheme
 - System admitting a computed-torque control law
 - Input constraints satisfaction
 - Positive invariant set construction
 - Bound of the weighted norm of the input
 - NMPC design with guaranteed stability
 - Simulation results

2. A stabilizing NMPC design for thrust-propelled vehicles dynamics

3. Conclusions and future developments
On the use of a computed-torque control law in an NMPC scheme

System admitting a computed-torque control law

Systems modeling

Dynamics of a system which admits a CTC law:

\[M(q)\ddot{q} + N(\dot{q}, q) = u, \]

with the state \(q = [q_1, ..., q_n]^\top \in \mathbb{R}^n \) and the actuator input \(u \in \mathbb{R}^n \).

\(M(q) \in \mathbb{R}^{n \times n} \) is a symmetric positive definite inertia matrix, \(N(\dot{q}, q) \in \mathbb{R}^n \) is the vector of the nonlinear terms (Coriolis forces, centrifugal forces).

Examples:

- Inverted pendulum:

 \[mL^2 \ddot{q} + mgL \cos(q) = \tau. \]

- 3D rigid body rotation dynamics:

 \[
 \Omega = W(\eta)\dot{\eta}, \\
 J\dot{\Omega} + \Omega \times (J\Omega) = \tau, \\
 \Rightarrow J W(\eta) \ddot{\eta} + J \frac{dW(\eta)}{dt} \dot{\eta} + \Omega \times (J\Omega) = \tau.
 \]

\[M(\eta) N(\dot{\eta}, \eta) \]
Systems modeling

Dynamics of a system which admits a CTC law:

\[M(q) \ddot{q} + N(\dot{q}, q) = u, \]

with the state \(q = [q_1, \ldots, q_n]^T \in \mathbb{R}^n \) and the actuator input \(u \in \mathbb{R}^n \).

\(M(q) \in \mathbb{R}^{n \times n} \) is a symmetric positive definite inertia matrix,

\(N(\dot{q}, q) \in \mathbb{R}^n \) is the vector of the nonlinear terms (Coriolis forces, centrifugal forces).

State-space representation, i.e., \(\dot{x} = f(x, u) \):

\[
\begin{bmatrix}
 \dot{q} \\
 \dot{\dot{q}}
\end{bmatrix} = \begin{bmatrix}
 I_n & 0 \\
 0 & M(q)^{-1}
\end{bmatrix} \begin{bmatrix}
 \dot{q} \\
 -N(\dot{q}, q) + u
\end{bmatrix}.
\]

Equilibrium point:

\(x_e = 0 \) and \(u_e = 0 \).

System constraints:

\(u \in \mathcal{U} = \{ u \in \mathbb{R}^n \mid -u_{\text{max}} \leq u \leq u_{\text{max}} \} \),

where \(u_{\text{max}} \) consists of all the positive maximal values of the actuator inputs.

\(x \in \mathcal{X} \),

where \(\mathcal{X} \) is a convex set in \(\mathbb{R}^{2n} \) containing \(x_e \).
Computed-torque control law

For the system $\mathbf{M}(q)\ddot{q} + \mathbf{N}(\dot{q}, q) = \mathbf{u}$, the computed-torque control law (Craig (2018)) is given by:

$$
\mathbf{u}_b(x, \nu) = \mathbf{M}(q)\nu + \mathbf{N}(\dot{q}, q),
$$

with $\nu \in \mathbb{R}^n$ the virtual control input. Note that, $\mathbf{u}_b(x_e, \nu_e) = \mathbf{u}_e = 0$.

If $\mathbf{u}_b(x, \nu) \in \mathcal{U}$, it transforms the system into the linear system:

$$
\dot{x} = Ax + B\nu,
$$

with $A \in \mathbb{R}^{2n \times 2n}$ and $B \in \mathbb{R}^{2n \times n}$ given by:

$$
A = \begin{bmatrix} 0_n & I_n \\ 0_n & 0_n \end{bmatrix}, \quad B = \begin{bmatrix} 0_n \\ I_n \end{bmatrix}.
$$
Application of Taylor’s theorem

Considering a ball parameterized by a radius \(\varepsilon \in \mathbb{R}^+ \) as:

\[
C(\varepsilon) = \{ (x, v) | \|x\|^2 + \|v\|^2 \leq \varepsilon^2 \}.
\]

For any \(\varepsilon > 0 \), applying Taylor’s theorem (Folland (1990)) to the CTC law \(u_b(x, v) \) for all \((x, v) \in C(\varepsilon) \), we have that:

\[
u_b(x, v) = u_b(x_e, v_e) + x J x + v J v + R_\varepsilon(x, v),
\]

with the two Jacobians
\[
x J = \left. \frac{\partial u_b}{\partial x} \right|_{(x, v) = (x_e, v_e)} \quad \text{and} \quad v J = \left. \frac{\partial u_b}{\partial v} \right|_{(x, v) = (x_e, v_e)}.
\]

The remainder vector \(R_\varepsilon \in \mathbb{R}^n \) is bounded from Taylor’s inequality as follows:

\[
|R_\varepsilon(x, v)| \leq \frac{M_\varepsilon}{2!} (\|x\|^2 + \|v\|^2),
\]

with \(M_\varepsilon \triangleq [M_{\varepsilon,1}, \ldots, M_{\varepsilon,n}] \) having each element, \(M_{\varepsilon,i} \in \mathbb{R}^+ \) \((i \in \{1, \ldots, n\}) \) defined as:

\[
M_{\varepsilon,i} = \max_{\|x\|^2 + \|v\|^2 \leq \varepsilon^2} |H(u_{b,i}(x, v))|,
\]

where \(u_{b,i}(x, v) \) is the \(i^{th} \) element of the vector function \(u_b(x, v) \). \(H(\cdot) \) is the Hessian matrix of a scalar-valued function containing all of its second-order partial derivatives (Meyer (2000)).
Application of the Cauchy-Schwarz inequality

For any $\varepsilon > 0$, we have that:

$$ u_b(x, v) = x Jx + v Jv + R_\varepsilon(x, v), \text{ with } |R_\varepsilon(x, v)| \leq \frac{M_\varepsilon}{2!} (\|x\|^2 + \|v\|^2). $$

Applying the Cauchy-Schwarz inequality (i.e., $|ax + by| \leq \sqrt{(a^2 + b^2)(x^2 + y^2)}$) to each element $u_{b,i}(x, v) (i \in \{1, \ldots, n\})$, it is straightforward to obtain:

$$ |u_{b,i}(x, v)| \leq C_i \sqrt{\|x\|^2 + \|v\|^2 + \frac{M_\varepsilon,i}{2} (\|x\|^2 + \|v\|^2)}, $$

where $C_i \in \mathbb{R}^+$ ($i \in \{1, \ldots, n\}$), is defined as:

$$ C_i = \sqrt{\|x J_i\|^2 + \|v J_i\|^2}, $$

with $x J_i$ and $v J_i$ the i^{th} rows of $x J$ and $v J$ matrices. Thus, by choosing $\varepsilon_{\max} \in \mathbb{R}^+$, such that:

$$ C\varepsilon_{\max} + \frac{M_{\varepsilon_{\max}}}{2} \varepsilon_{\max}^2 \leq u_{\max}, $$

with $C \triangleq [C_1, \ldots, C_n]^{\top}$, we have that:

$$ |u_b(x, v)| \leq u_{\max}, \forall (x, v) \in C(\varepsilon_{\max}). $$
Proof of concept example

Find ε_{max} such that $|u_b(x, v)| \leq u_{\text{max}}$ for all $(x, v) \in \mathcal{C}(\varepsilon_{\text{max}})$: $x^2 + v^2 \leq \varepsilon_{\text{max}}^2$ with

$$u_b(x, v) = \begin{bmatrix} v + \sin(x) \\ \exp(x)v \end{bmatrix} \quad \text{and} \quad u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$
Proof of concept example

Find ε_{max} such that $|u_b(x, v)| \leq u_{\text{max}}$ for all $(x, v) \in C(\varepsilon_{\text{max}}) : x^2 + v^2 \leq \varepsilon^2_{\text{max}}$ with

$$u_b(x, v) = \begin{bmatrix} v + \sin(x) \\ \exp(x)v \end{bmatrix} \quad \text{and} \quad u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad (u_b(x, v) = M(q)v + N(q, q)).$$
Proof of concept example

Find \(\varepsilon_{\text{max}} \) such that \(|u_b(x, v)| \leq u_{\text{max}} \) for all \((x, v) \in C(\varepsilon_{\text{max}}) : x^2 + v^2 \leq \varepsilon_{\text{max}}^2 \) with

\[
|u_b(x, v)| = \begin{bmatrix} \cos(x) \\ v \\ \exp(x) v \end{bmatrix}
\]

\[
\text{and} \quad u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},
\]

1) Taylor’s series:

\[
u_b(x, v) = \begin{bmatrix} \cos(x_e) \\ v_e \exp(x_e) \end{bmatrix} x + \begin{bmatrix} 1 \\ \exp(x_e) \end{bmatrix} v + R_\varepsilon(x, v).
\]
Proof of concept example

Find ε_{max} such that $|u_b(x, v)| \leq u_{\text{max}}$ for all $(x, v) \in C(\varepsilon_{\text{max}}): x^2 + v^2 \leq \varepsilon_{\text{max}}^2$ with

$$u_b(x, v) = \begin{bmatrix} v + \sin(x) \\ \exp(x)v \end{bmatrix} \quad \text{and} \quad u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

1) Taylor’s series:

$$u_b(x, v) = \cos(x) \begin{bmatrix} \cos(x) \\ v \exp(x) \end{bmatrix} x + \begin{bmatrix} 1 \\ \exp(x) \end{bmatrix} v + R_\varepsilon(x, v).$$

2) Taylor’s inequality:

$$|R_\varepsilon(x, v)| \leq \frac{1}{2} \begin{bmatrix} M_{\varepsilon,1} \\ M_{\varepsilon,2} \end{bmatrix} (x^2 + v^2).$$

with

$$M_{\varepsilon,1} = \max_{x^2 + v^2 \leq \varepsilon^2} H(u_b,1(x,v)) \quad \text{and} \quad M_{\varepsilon,2} = \max_{x^2 + v^2 \leq \varepsilon^2} H(u_b,2(x,v)).$$

$$H(u_b,1(x,v)) = \begin{bmatrix} (\partial^2 u_b,1)/(\partial x^2) & (\partial^2 u_b,1)/(\partial x \partial v) \\ (\partial^2 u_b,1)/(\partial v \partial x) & (\partial^2 u_b,1)/(\partial v^2) \end{bmatrix} = \max_{x^2 + v^2 \leq \varepsilon^2} \begin{bmatrix} -\sin(x) & 0 \\ 0 & 0 \end{bmatrix},$$

$$H(u_b,2(x,v)) = \begin{bmatrix} (\partial^2 u_b,2)/(\partial x^2) & (\partial^2 u_b,2)/(\partial x \partial v) \\ (\partial^2 u_b,2)/(\partial v \partial x) & (\partial^2 u_b,2)/(\partial v^2) \end{bmatrix} = \max_{x^2 + v^2 \leq \varepsilon^2} \begin{bmatrix} v \exp x & \exp x \\ \exp x & 0 \end{bmatrix}.$$
Proof of concept example

Find ε_{max} such that $|u_b(x, v)| \leq u_{\text{max}}$ for all $(x, v) \in C(\varepsilon_{\text{max}}): x^2 + v^2 \leq \varepsilon_{\text{max}}^2$ with

$$u_b(x, v) = \begin{bmatrix} v + \sin(x) \\ \exp(x) v \end{bmatrix} \quad \text{and} \quad u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

1) Taylor’s series:

$$u_b(x, v) = \begin{bmatrix} \cos(x_e) \\ v_e \exp(x_e) \end{bmatrix} x + \begin{bmatrix} 1 \\ \exp(x_e) \end{bmatrix} v + R_\varepsilon(x, v).$$

2) Taylor’s inequality:

$$|R_\varepsilon(x, v)| \leq \frac{1}{2} \begin{bmatrix} M_{\varepsilon,1} \\ M_{\varepsilon,2} \end{bmatrix} (x^2 + v^2).$$

3) Cauchy-Schwarz inequality:

$$|u_b(x, v)| \leq \begin{bmatrix} \sqrt{\cos^2(x_e) + 1} \\ \sqrt{v_e^2 \exp(2x_e) + \exp(2x_e)} \end{bmatrix} \begin{bmatrix} \sqrt{x^2 + v^2} + \frac{1}{2} \begin{bmatrix} M_{\varepsilon,1} \\ M_{\varepsilon,2} \end{bmatrix} (x^2 + v^2).
Proof of concept example

Find ε_{max} such that $|u_b(x, v)| \leq u_{\text{max}}$ for all $(x, v) \in C(\varepsilon_{\text{max}}) : x^2 + v^2 \leq \varepsilon_{\text{max}}^2$ with

$$u_b(x, v) = \begin{bmatrix} v + \sin(x) \\ \exp(x)v \end{bmatrix} \text{ and } u_{\text{max}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

1) Taylor’s series:

$$u_b(x, v) = \begin{bmatrix} \cos(x_e) \\ v_e \exp(x_e) \end{bmatrix} x + \begin{bmatrix} 1 \\ \exp(x_e) \end{bmatrix} v + R_\varepsilon(x, v).$$

2) Taylor’s inequality:

$$|R_\varepsilon(x, v)| \leq \frac{1}{2} \begin{bmatrix} M_{\varepsilon,1} \\ M_{\varepsilon,2} \end{bmatrix} (x^2 + v^2).$$

3) Cauchy-Schwarz inequality:

$$|u_b(x, v)| \leq \sqrt{\cos^2(x_e) + 1} \sqrt{v^2 \exp(2x_e) + \exp(2x_e)} \sqrt{x^2 + v^2} + \frac{1}{2} \begin{bmatrix} M_{\varepsilon,1} \\ M_{\varepsilon,2} \end{bmatrix} (x^2 + v^2).$$

4) Find ε_{max} such that:

$$\begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix} \varepsilon_{\text{max}} + \max_{x^2 + v^2 \leq \varepsilon_{\text{max}}^2} \left\{|v \exp(x)|, |\exp(x)|\right\} \varepsilon_{\text{max}}^2 \leq \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \varepsilon_{\text{max}} = 0.578 \text{ with } LHS = \begin{bmatrix} 0.99 \\ 1.17 \end{bmatrix}.$$
Reminder (stability conditions of NMPC design with invariant set)!

The recursive feasibility and the asymptotic (exponential) stability of the closed-loop controlled system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

(C1) [State constraints fulfillment in X_f] $X_f \subseteq X, \; x_e \in X_f$.

(C2) [Input constraints fulfillment in X_f] There exists a local controller $u_{loc}(x)$ such that $u_{loc}(x) \in U, \; \forall x \in X_f$.

(C3) [Positively invariant terminal set] X_f is positively invariant under $u_{loc}(x)$.

(C4) [Local Lyapunov function existence] The stage and terminal costs $\ell(x, u), F(x)$ under $u_{loc}(x)$ (i.e., $\dot{x} = f(x, u_{loc}(x))$) satisfy:

$$\frac{dF(x)}{dt} + \ell(x, u_{loc}(x)) \leq 0, \; \forall x \in X_f.$$

feasibility obtained with the assumption of the first successful iteration.
Reminder (stability conditions of NMPC design with invariant set)!

The recursive feasibility\(^3\) and the asymptotic (exponential) stability of the closed-loop controlled system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

1. **(C1) State constraints fulfillment in \(\mathcal{X}_f\)**: \(\mathcal{X}_f \subseteq \mathcal{X}, x_e \in \mathcal{X}_f\).

2. **(C2) Input constraints fulfillment in \(\mathcal{X}_f\)**: There exists a local controller \(u_{\text{loc}}(x)\) such that \(u_{\text{loc}}(x) \in \mathcal{U}, \forall x \in \mathcal{X}_f\).

3. **(C3) Positively invariant terminal set** \(\mathcal{X}_f\) is positively invariant under \(u_{\text{loc}}(x)\).

4. **(C4) Local Lyapunov function existence** The stage and terminal costs \(\ell(x, u), F(x)\) under \(u_{\text{loc}}(x)\) (i.e., \(\dot{x} = f(x, u_{\text{loc}}(x))\)) satisfy:

\[
\frac{dF(x)}{dt} + \ell(x, u_{\text{loc}}(x)) \leq 0, \ \forall x \in \mathcal{X}_f.
\]

\(^3\)feasibility obtained with the assumption of the first successful iteration.
Lemma 1 (Nguyen et al. (2019b))

Let us construct the matrix K as:

$$K = \begin{bmatrix} \text{diag}(K_{p1}, \ldots, K_{pn}) & \text{diag}(K_{d1}, \ldots, K_{dn}) \end{bmatrix},$$

where the $2n$ control gains K_{p1}, \ldots, K_{pn} and K_{d1}, \ldots, K_{dn} are chosen such that:

\[
\begin{align*}
K_{pi} &< 0, \quad K_{di} < 0, \\
4K_{di}^2 &> -K_{pi}(K_{pi} + 1)^2 - K_{pi} - \frac{(K_{pi} + 1)^2}{K_{pi}},
\end{align*}
\]

with $i \in \{1, \ldots, n\}$ and define the set \mathcal{X}_f as:

$$\mathcal{X}_f = \{x \in \mathbb{R}^n \mid x^\top \left(I_{2n} + K^\top K \right) x \leq \varepsilon^2 \},$$

where ε is chosen such that:

\[
\begin{align*}
\varepsilon &\leq \varepsilon_{\max}, \\
\mathcal{X}_f &\subseteq \mathcal{X},
\end{align*}
\]

Then, we have that:

(i) $x \in \mathcal{X}_f$ imposes that the control action $u_b(x, Kx) \in \mathcal{U}$ (i.e., the CTC law $u_b(x, v)$ employing the virtual input design $v = Kx$ satisfies the input constraints);

(ii) the set \mathcal{X}_f is positively invariant for the controlled system $\dot{x} = f(x, u_b(x, Kx)).$
Bound of the weighted norm of the input

Lemma 2 (Nguyen et al. (2019b))

If \(x \in X_f \), there exists \(R^* \in \mathbb{R}^{2n \times 2n} \) such that:

\[
\| u_b(x, Kx) \|^2_R \leq \| x \|^2_{R^*},
\]

with \(R \triangleq \text{diag}\{R_1, \ldots, R_n\} \) semi-positive definite matrix and \(K \) the control gain matrix.

Proof.

Employing the diagonal matrix \(R \) leads to:

\[
\| u_b(x, Kx) \|^2_R = \sum_{i=1}^{n} R_i u_{b,i}^2(x, Kx).
\]

Previous results on bound of \(u_{b,i}^2(x, v) \) with \(i \in \{1, \ldots, n\} \):

\[
u_{b,i}^2(x, Kx) \leq \left(C_i + \frac{M_{e,i}}{2} \varepsilon \right)^2 (\| x \|^2 + \| Kx \|^2) = \left(C_i + \frac{M_{e,i}}{2} \varepsilon \right)^2 x^\top (I_{2n} + K^\top K)x.\]

Hence, Lemma 2 is validated with the matrix \(R^* \in \mathbb{R}^{2n \times 2n} \) chosen such that:

\[
R^* - \sum_{i=1}^{n} R_i \left(C_i + \frac{M_{e,i}}{2} \varepsilon \right)^2 (I_{2n} + K^\top K) \succeq 0.
\]
Reminder (stability conditions of NMPC design with invariant set)!

The recursive feasibility4 and the asymptotic (exponential) stability of the closed-loop controlled system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

\begin{enumerate}[(C1)]
\item [State constraints fulfillment in \mathcal{X}_f] $\mathcal{X}_f \subseteq \mathcal{X}$, $x_e \in \mathcal{X}_f$.
\item [Input constraints fulfillment in \mathcal{X}_f] There exists a local controller $u_{\text{loc}}(x)$ such that $u_{\text{loc}}(x) \in \mathcal{U}$, $\forall x \in \mathcal{X}_f$.
\item [Positively invariant terminal set] \mathcal{X}_f is positively invariant under $u_{\text{loc}}(x)$.
\item [Local Lyapunov function existence] The stage and terminal costs $\ell(x,u), F(x)$ under $u_{\text{loc}}(x)$ (i.e., $\dot{x} = f(x, u_{\text{loc}}(x))$) satisfy:
\[\frac{dF(x)}{dt} + \ell (x, u_{\text{loc}}(x)) \leq 0, \: \forall x \in \mathcal{X}_f. \]
\end{enumerate}

4feasibility obtained with the assumption of the first successful iteration.
Reminder (stability conditions of NMPC design with invariant set)!

The recursive feasibility\(^4\) and the asymptotic (exponential) stability of the closed-loop controlled system are guaranteed if the following conditions are satisfied (Mayne et al. (2000)):

1. **(C1) [State constraints fulfillment in \(\mathcal{X}_f\)]** \(\mathcal{X}_f \subseteq \mathcal{X}, \ x_e \in \mathcal{X}_f\).

2. **(C2) [Input constraints fulfillment in \(\mathcal{X}_f\)]** There exists a local controller \(u_{\text{loc}}(x)\) such that \(u_{\text{loc}}(x) \in \mathcal{U}, \ \forall x \in \mathcal{X}_f\).

3. **(C3) [Positively invariant terminal set]** \(\mathcal{X}_f\) is positively invariant under \(u_{\text{loc}}(x)\).

4. **(C4) [Local Lyapunov function existence]** The stage and terminal costs \(\ell(x, u), F(x)\) under \(u_{\text{loc}}(x)\) (i.e., \(\dot{x} = f(x, u_{\text{loc}}(x))\)) satisfy:

\[
\frac{dF(x)}{dt} + \ell(x, u_{\text{loc}}(x)) \leq 0, \ \forall x \in \mathcal{X}_f.
\]

\(^4\)feasibility obtained with the assumption of the first successful iteration.
Recursive feasibility and stability guarantees

- Stage cost design:
 \[\ell(x, u) = \|x\|^2_Q + \|u\|^2_R, \]
 with \(Q \in \mathbb{R}^{2n \times 2n} \) positive definite and \(R \triangleq \text{diag}\{R_1, \ldots, R_n\} \) semi-positive definite matrices.

- Terminal cost design:
 \[F(x) = \|x\|^2_P, \]
 with \(P \in \mathbb{R}^{2n \times 2n} \) positive definite matrix defined hereinafter.

Lemma 3 (Nguyen et al. (2019b))

Let us consider the matrix \(P \succ 0 \) as the unique solution of the Lyapunov equation given by:

\[A_K^T P + PA_K + Q + R^* = 0, \]

with the Routh-Hurwitz matrix \(A_K = A + BK \) of the linear system resulted from the CTC controller \(u_b(x, Kx) \). Then, the nominal closed-loop system controlled by the NMPC controller with the terminal region \(\mathcal{X}_f = \{ x^T (I_{2n} + K^T K)x \leq \varepsilon^2 \} \) achieves recursive feasibility and asymptotic stability.
Satisfaction of four NMPC design conditions

[Proof sketch of Lemma 3] The asymptotic stability is proven by the satisfaction of the four NMPC design conditions with the local controller $u_{\text{loc}}(x)$ chosen as the CTC law $u_b(x, Kx)$.

- **C1**: $x_e \in \mathcal{X}_f = \{x^\top (I_{2n} + K^\top K)x \leq \varepsilon^2\}$ is trivial and $\mathcal{X}_f \subseteq \mathcal{X}$ is by tuning ε.

- **C2**: $u_{\text{loc}}(x) \equiv u_b(x, Kx) \in U$, $\forall x \in \mathcal{X}_f$ since \mathcal{X}_f is constraint admissible due to $\varepsilon \leq \varepsilon_{\text{max}}$.

- **C3**: \mathcal{X}_f is positively invariant under $u_{\text{loc}}(x)$ due to Lemma 1.

- **C4**: for all $x \in \mathcal{X}_f$, we have that:

$$\frac{d}{dt} \left(\|x\|^2_P \right) + \|x\|_Q^2 + \|u_{\text{loc}}(x)\|^2_R \leq x^\top \left(A_K^\top P + PA_K + Q + R^* \right) x = 0,$$

for which, $\frac{d}{dt} \left(\|x\|^2_P \right) = x^\top (A_K^\top P + PA_K) x$ is resulted from applying the CTC law $u_b(x, Kx)$, thus, obtaining the stable linear system. $\|u_{\text{loc}}(x)\|^2_R \leq \|x\|^2_{R^*}$ previously introduced. $A_K^\top P + PA_K + Q + R^* = 0$ is by choosing P as its solution.
Design procedure of the NMPC controller for stabilizing the system possessing the CTC law:

1) Choose the weighting matrices $Q \in \mathbb{R}^{2n \times 2n}$ and $R = \text{diag}\{R_1, \ldots, R_n\}$ of the stage cost.

2) Estimate the prediction horizon T_p based on the computational constraint of the platform (e.g., the processing speed requirement).

3) Find the largest possible ε_{max} satisfying $C\varepsilon_{\text{max}} + \frac{M\varepsilon_{\text{max}}}{2} \leq \varepsilon_{\text{max}}^2$.

4) Define the control gain matrix K which stabilizes the resulted linear system and guarantees the invariance property. Then, tune $\varepsilon \leq \varepsilon_{\text{max}}$ in order to obtain the terminal region X_f:

$$X_f = \{x \in \mathbb{R}^n | x^\top (I_{2n} + K^\top K)x \leq \varepsilon^2 \} \subseteq \mathcal{X}.$$

5) Define the matrix R^* such that $\|u_b(x, Kx)\|_R^2 \leq \|x\|_R^2$ for all $x \in X_f$. Then, solve the Lyapunov equation $A_K^\top P + PA_K + Q + R^* = 0$ for the terminal weighting matrix P.

Ionela Prodan (LCIS-Grenoble INP)
Inverted pendulum system on a cart

Srinivasan et al. (2009)

The angular dynamics of the system is

\[M(q)\ddot{q} + N(\dot{q}, q) = u \]

with \(q \in \mathbb{R} \), the angle between the vertical line and the pendulum. The nonlinear terms \(M(q) \) and \(N(q, \dot{q}) \) are given by:

\[M(q) = \mu \cos q - \frac{mJ}{\mu \cos q}, \quad N(q, \dot{q}) = mg - \mu \dot{q}^2 \sin q, \]

with \(m = 0.3235, \mu = 1.3625 \times 10^{-3} \) and \(J = 1.5265 \times 10^{-4} \) the physical parameters of the system, \(g = 9.81 \) the gravity and \(u \in \mathbb{R} \) the force applied to the cart.

- Input constraint: \(|u| \leq u_{max} \) with \(u_{max} = 0.6 \).
- State constraints: \(|q| \leq 0.16, \ |\dot{q}| \leq 0.3 \).
- Equilibrium point: \((x_e, u_e) = (0, 0) \).
- Initial state: \(x_0 = [0.15 \ 0]^T \).
Simulation scenarios and tuning parameters

- Scenario 1: stabilizing the inverted pendulum using CTC within the positive invariant set \mathcal{X}^1_f.
- Scenario 2: using the proposed NMPC design with the terminal region \mathcal{X}^2_f.
- Scenario 3: using the quasi-infinite horizon NMPC controller with the terminal region Ω_α.

Table: Design parameters for stabilizing the pendulum

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common parameters</td>
<td>Sampling time δ</td>
<td>0.1 sec</td>
</tr>
<tr>
<td></td>
<td>Weighting matrices Q, R</td>
<td>$\text{diag}{5, 1}$, 1</td>
</tr>
<tr>
<td></td>
<td>Jacobian matrices xJ, vJ</td>
<td>$[3.1735 \ 0]$, -0.0349</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.1737</td>
</tr>
<tr>
<td></td>
<td>M_ε</td>
<td>1.1882</td>
</tr>
<tr>
<td></td>
<td>$\varepsilon = \varepsilon_{\text{max}}$</td>
<td>0.1793</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>Control gain matrix K_1</td>
<td>$[-0.5 \ -0.55]$</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Prediction horizon T_2</td>
<td>0.4 sec</td>
</tr>
<tr>
<td></td>
<td>Control gain matrix K_2</td>
<td>$[-1 \ -0.6]$</td>
</tr>
<tr>
<td></td>
<td>R^*</td>
<td>$[21.52 \ 6.46; \ 6.46 \ 14.63]$</td>
</tr>
<tr>
<td></td>
<td>Terminal weighting matrix P</td>
<td>$[36.63 \ 13.26; \ 13.26 \ 35.13]$</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>Prediction horizon T_3</td>
<td>0.6 sec</td>
</tr>
<tr>
<td></td>
<td>K_q, κ</td>
<td>$[7.0557 \ 1.2216]$, 3</td>
</tr>
<tr>
<td></td>
<td>Terminal weighting matrix P_q</td>
<td>$[29.90 \ 1.05; \ 1.05 \ 0.072]$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Simulation results

Figure: Terminal regions \mathcal{X}_{f_1}, \mathcal{X}_{f_2} and Ω_α and state trajectories under different scenarios.

Figure: Convergence of states under different scenarios.

Figure: Values of the input u under different scenarios.

Figure: Computing time for the two Scenarios 2 and 3.

Outline

1. On the use of a computed-torque control law in an NMPC scheme

2. A stabilizing NMPC design for thrust-propelled vehicles dynamics
 - Thrust-propelled translation dynamics
 - Feedback linearization law and input constraints satisfaction
 - Construction of the constraint admissible invariant set
 - NMPC design for thrust-propelled vehicles
 - Simulation results

3. Conclusions and future developments
Thrust-propelled translation dynamics

Thrust-propelled translation dynamics (Mellinger and Kumar (2011); Nguyen et al. (2017, 2019a)):

\[\ddot{\xi} = \overrightarrow{g} + R \overrightarrow{T}, \]

with \(\xi \triangleq (x, y, z)^\top \) the position of the vehicle, \(\overrightarrow{g} \triangleq (0, 0, -g)^\top \) the gravity and \(\overrightarrow{T} \triangleq (0, 0, T)^\top \) the normalized thrust force. \(R \) is the rotation matrix of the roll-pitch yaw XYZ (\(\phi, \theta, \psi \)) rotating sequence.

Two Way Ranging radio message
Input message \(\{T_r, \phi_r, \theta_r, \psi_r\} \)
Feedback \(\{\xi, \eta\} \)

Experimental room equipped with the Loco Positioning system

Thrust-propelled translation dynamics

Thrust-propelled translation dynamics (Mellinger and Kumar (2011); Nguyen et al. (2017, 2019a)):

\[\ddot{\xi} = \ddot{g} + R \dot{T}, \]

with \(\xi \triangleq (x, y, z)^\top \) the position of the vehicle, \(\ddot{g} \triangleq (0, 0, -g)^\top \) the gravity and \(\dot{T} \triangleq (0, 0, T)^\top \) the normalized thrust force. \(R \) is the rotation matrix of the roll-pitch yaw XYZ (\(\phi, \theta, \psi \)) rotating sequence.

State-space representation:

\[\dot{x} = f(x, u) = Ax + h_\psi(u), \]

with \(A = \begin{bmatrix} 0_{3 \times 3} & I_3 \\ 0_{3 \times 3} & 0_{3 \times 3} \end{bmatrix} \), \(h_\psi(u) = \begin{bmatrix} 0_{3 \times 1} \\ T(\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \\ T(\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \\ -g + T \cos \phi \cos \theta \end{bmatrix}, \)

where \(x \triangleq (\xi^\top, \dot{\xi}^\top)^\top \) and \(u \triangleq (T, \phi, \theta)^\top \) (i.e., thrust, roll and pitch angles).

The yaw angle \(\psi \) is an assumed known constant variable affecting the system.

The equilibrium point is fixed at \(x_e = 0 \) and \(u_e = [g \ 0 \ 0]^\top \).

The input \(u \) is constrained as \(u \in \mathcal{U} = \{ u \in \mathbb{R}^3 \mid 0 \leq T \leq T_{\text{limit}}, |\phi| \leq \epsilon_c, |\theta| \leq \epsilon_c \} \),

with \(T_{\text{limit}} > g \) the thrust limit and \(\epsilon_c \in (0, \pi/2) \) the desired maximum value of the angles.
Feedback linearization law

Mellinger and Kumar (2011); Formentin and Lovera (2011); Nguyen et al. (2017)

Feedback linearization law \(u_b(u, \psi) : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}^3 \) with \(u_b \triangleq [T_b \ \phi_b \ \theta_b]^\top \) and the virtual input vector \(u \triangleq [u_x \ u_y \ u_z]^\top \):

\[
T_b = \sqrt{u_x^2 + u_y^2 + (u_z + g)^2},
\]

\[
\phi_b = \arcsin \left(\frac{u_x \sin \psi - u_y \cos \psi}{\sqrt{u_x^2 + u_y^2 + (u_z + g)^2}} \right),
\]

\[
\theta_b = \arctan \left(\frac{u_x \cos \psi + u_y \sin \psi}{u_z + g} \right).
\]

If \(u_b \in \mathcal{U} \), \(u_b \) linearizes the nonlinear system \(\dot{x} = Ax + h_\psi(u) \) into the linear stabilizable system:

\[
\dot{x} = A_x + h_\psi(u_b(u, \psi)) \iff \dot{x} = Ax + Bu \quad \text{(i.e.,)} \quad \begin{cases}
\dot{x} = v_x, & \dot{v}_x = u_x, \\
\dot{y} = v_y, & \dot{v}_y = u_y, \\
\dot{z} = v_z, & \dot{v}_z = u_z.
\end{cases}
\]

with \(B = [0_{3 \times 3} \ 1_3]^\top \).
Input constraint satisfaction with feedback linearization control

Input constraints

\[u \in U = \{ u \in \mathbb{R}^3 | 0 \leq T \leq T_{\text{limit}}, |\phi| \leq \epsilon_c, |\theta| \leq \epsilon_c \}, \ T_{\text{limit}} < g, \ \epsilon_c \in (0, \pi/2) \].

Lemma 4

Nguyen et al. (2018). By choosing three positive constants \(U_x, U_y \) and \(U_z \) such that:

\[U_z < g, \quad U_x^2 + U_y^2 \leq (-U_z + g)^2 \tan^2 \epsilon_c, \quad \sqrt{U_x^2 + U_y^2 + (U_z + g)^2} \leq T_{\text{limit}}, \]

we have that, if \(|u_x| \leq U_x, |u_y| \leq U_y \) and \(|u_z| \leq U_z\), then \(u_b(u, \psi) \in U, \ \forall \psi \in [-\pi, \pi] \).

Only bounds on the virtual inputs are required to ensure the input constraints satisfaction, \(u_b(u, \psi) \in U \).

Constraint admissible invariant set

Proposition 5

For any positive definite matrix $M \in \mathbb{R}^{6 \times 6}$, we obtain the positive definite matrix $P \in \mathbb{R}^{6 \times 6}$ as the unique solution of the Lyapunov equation:

$$A_{cl}^\top P + PA_{cl} = -M,$$

with $A_{cl} = A + BK$. Let us define

$$\delta = \lambda_{\min}(P)r^2, \quad \text{with} \quad r^2 = \min_{q \in \{x, y, z\}} \left\{ \frac{U_q^2}{K_{1q}^2 + K_{2q}^2} \right\}.$$

with U_x, U_y, U_z the virtual input limit. Then, considering the set \mathcal{X}_f defined as follows:

$$\mathcal{X}_f = \{ \mathbf{x} \in \mathbb{R}^6 \mid \|\mathbf{x}\|_P^2 \leq \delta \},$$

we have that, under the feedback linearization controller $u_b(K\mathbf{x}, \psi)$, \mathcal{X}_f is an input constraint admissible invariant set.

Sketch of the proof:

- A_{cl} is a stable matrix which ensures the existence of the positive definite matrix P as the unique solution of the Lyapunov equation for any positive definite matrix M.
- $\|\mathbf{x}\|_P^2 \leq \delta \Rightarrow \|\mathbf{x}\|^2 \leq r^2 \Rightarrow |u_q| \leq U_q, \forall q \in \{x, y, z\} \Rightarrow u_b(K\mathbf{x}, \psi) \in \mathcal{U}$ by Lemma 4.
- $\frac{d}{dt} \|\mathbf{x}\|_P^2 = \mathbf{x}^\top (A_{cl}^\top P + PA_{cl})\mathbf{x} = -\mathbf{x}^\top M\mathbf{x} < 0 \Rightarrow$ positive invariant.
Summary of the NMPC design for thrust-propelled vehicle

Design procedure of the NMPC controller for stabilizing the thrust-propelled system:

1) Choose the positive definite matrices $Q \in \mathbb{R}^{6 \times 6}$ and $R \in \mathbb{R}^{3 \times 3}$ (semi-positive) to formulate the stage cost.

2) Estimate the prediction horizon T_p based on the computational constraint of the platform (e.g., the processing speed requirement).

3) Choose the saturation limits U_x, U_y and U_z satisfying the required conditions for ensuring input constraints satisfaction.

4) Choose the control gains K_{1q}, K_{2q} with $q \in \{x, y, z\}$ which stabilize the resulted linear system.

5) Find the matrix Q^*, then, define the matrix $M \geq Q^*$ and solve the Lyapunov equation for P.

6) Find δ to obtain the terminal region $\mathcal{X}_f = \{x \in \mathbb{R}^6 \mid \|x\|_P^2 \leq \delta\}$.
Simulation scenarios and tuning parameters

Crazyflie 2.0 nano-quadcopter: thrust limit $T_{\text{limit}} = 2g$ and maximum angle values $\epsilon_c = 10^\circ$.

Fixing the NMPC sampling time $\delta = 0.1$ seconds, two scenarios are considered as follows:

Scenario 1: Stabilizing the thrust-propelled translation dynamics with $\psi = 0$ using the proposed NMPC controller.

<table>
<thead>
<tr>
<th>Table: Parameters of the proposed NMPC controller.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q, R</td>
</tr>
<tr>
<td>U_x, U_y, U_z</td>
</tr>
<tr>
<td>$K_{1q} = K_{2q}$, $q \in {x, y, z}$</td>
</tr>
<tr>
<td>M ($M \preceq Q^*$)</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>δ</td>
</tr>
<tr>
<td>T_p</td>
</tr>
</tbody>
</table>
Simulation scenarios and tuning parameters

Crazyflie 2.0 nano-quadcopter: thrust limit \(T_{\text{limit}} = 2g \) and maximum angle values \(\epsilon_c = 10^\circ \).

Fixing the NMPC sampling time \(\delta = 0.1 \) seconds, two scenarios are considered as follows:

Scenario 1: Stabilizing the thrust-propelled translation dynamics with \(\psi = 0 \) using the proposed NMPC controller.

Scenario 2: Stabilizing thrust-propelled translation dynamics with \(\psi = 0 \) using the quasi-infinite horizon NMPC controller (Chen and Allgöwer (1998)) with the ellipsoidal terminal region \(\Omega_\alpha = \{ \mathbf{x} \in \mathbb{R}^6 | \mathbf{x}^\top P_{qM} \mathbf{x} \leq \alpha \} \).

Table: Parameters of the quasi-infinite horizon NMPC controller.

<table>
<thead>
<tr>
<th></th>
<th>Values</th>
</tr>
</thead>
</table>
| \(K_{qM} \) | \[
\begin{bmatrix}
0 & 0 & -1 & 0 & 0 & -1 \\
0 & 1/g & 0 & 0 & 1/g & 0 \\
-1/g & 0 & 0 & -1/g & 0 & 0 \\
\end{bmatrix}
\] |
| \(\kappa \) | 0.4 |
| \(P_{qM} \) | \[
\begin{bmatrix}
\text{diag}\{69.8, 69.8, 72.8\} & \text{diag}\{32.9, 32.9, 33.6\} \\
\text{diag}\{32.9, 32.9, 33.6\} & \text{diag}\{63.2, 63.2, 66.8\} \\
\end{bmatrix}
\] |
| \(\alpha \) | 0.17 |
| \(T_p \) | 1.5 seconds |
Simulation results

Figure: Terminal regions \mathcal{X}_f and Ω_α and state trajectories under different scenarios.

Figure: Values of the input u under different scenarios.

Figure: Convergence of states under different scenarios.

Figure: Computing time under different scenarios.

Outline

1. On the use of a computed-torque control law in an NMPC scheme
2. A stabilizing NMPC design for thrust-propelled vehicles dynamics
3. Conclusions and future developments
Conclusions and future developments

Conclusions:

- Terminal region design in an NMPC (Nonlinear Model Predictive Control) scheme via CTC (Computed-Torque Control) and feedback linearization.
- Analyze the use of a CTC (Computed-Torque Control) law in an NMPC (Nonlinear Model Predictive Control) scheme to stabilize a particular type of systems (Nguyen et al. (2019b)).
- Analyze to the use of a standard feedback linearization controller in an NMPC (Nonlinear Model Predictive Control) scheme to stabilize the thrust-propelled vehicles (Nguyen et al. (2019a)).
- Provide simulations and comparisons with quasi-infinite horizon NMPC.

Future developments:

- Robustness under model mismatches and bounded disturbances.
- Polyhedral terminal regions.
References

John Craig. *Introduction to robotics*. 2018.

References II

