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INTRODUCTION
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Introduction: Why MPC

Nice Features

• Widely acknowledged as one of the most important
developments in systems and control in the second half of
the 20th century.

• Many books have been written on the topic and MPC has
been used in thousands of industrial applications.

• Key advantages include the ability to deal with multivariable
systems and hard constraints in a systematic manner.

Main Principle

The idea of MPC is to generate a stabilising feedback controller,
KN(x), by repeatedly solving a finite horizon open loop optimal
control problem and implementing it in a receding horizon manner.
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Introduction: MPC as a Feedback Controller in RHC Form

Figure: Receding horizon control
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Introduction: MPC and Future Disturbances

Prediction

• Central to the concept of MPC is the idea of predicting the
system response over a finite future horizon.

• The way in which MPC deals with the uncertainty associated
with future disturbances is of major importance and has led to
significant research effort.

• Two general approaches that have been proposed in
contemporary literature are Robust MPC and Stochastic
MPC.

• Although they share many common attributes, the core
difference between Robust and Stochastic MPC lies in how
the disturbances are described.
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Introduction: Robust and Stochastic MPC

Robust MPC (e.g., min-max MPC, tube-based MPC)

• Disturbances take values in a compact set.

• Every possible disturbance has to be accounted for and has
equal importance.

• Guaranteed to always be safe −→ conservative.

Stochastic MPC

• Disturbances are considered as random processes, not
necessarily bounded.

• A ‘value function’ is assigned to each possible disturbance
realisation.

• The value function is described mathematically by embedding
the disturbance in a probability space.

• Guaranteed to be safe ’in probability’ −→ less conservative.
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Introduction: Stochastic MPC

‘Curse’ of Dimensionality

• Stochastic MPC implementations are significantly more
complex than others since it optimises over control policies
(POMPC) rather than control sequences (SOMPC).

• If one assumes the disturbance can take W different values
over a horizon of length N, then a full solution to the
associated policy optimisation problem leads to

∑N−1
k=0 W k

decision variables.

• Thus, it is important to examine under what circumstances
the added complexity associated with Stochastic MPC based
on policy optimisation brings noteworthy performance gains.
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Introduction: Stochastic MPC, Explicit View

Equivalence between different forms of MPC

• We will see that the control laws associated with the different
algorithms (POMC, SOMPC, traditional MPC) can indeed be
equivalent under certain circumstances.

• In cases where the solutions are different, we can obtain
‘geometric’ insights into the performance gap.

• The tool to use is the geometric features of stochastic MPC,
revealed by analysing explicit forms of the solution.

• Explicit MPC, instead of repeatedly finding the online solution
of an optimisation problem, solves the optimisation problem
offline, obtaining an explicit function that maps the state (and
reference/disturbances) to the optimal control input.
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MOTIVATION
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Motivational Application: Diabetes Management

The problem

• Regulation of blood glucose levels (BGL) by administering
insulin in individuals having Type I diabetes.

• Constraints: one-sided control (insulin can be added but not
removed), hard state constraints (BGL cannot be lower than a
certain level that results in hypoglycaemia, putting the
person’s life at risk), soft state constraints (it is desirable to
keep BGL below a certain level most of the time).

• Uncertainty: in both model parameters and the nature of the
disturbance inputs (food consumption, exercise and stress).

• Although future disturbances cannot be known in advance, it
is possible to consider a number of disturbance scenarios with
different probabilities according to the individual’s lifestyle.
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BGL 4 day-response under Stochastic MPC (blue solid line)
‘traditional’ MPC (red dashed line), with ‘disturbances’: dinner
at 7pm, exercise at 8pm, breakfast at 7am and lunch at 12 pm.
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Probability distribution of BGL for each algorithm. Striking
result: POMPC has only a slightly increased probability that
BGL lies near the target value of 100 mg/dL !!
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PROBLEM FORMULATION
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Overview of (State-Feedback) Stochastic MPC
We consider a linear system of the form:

xk+1 = Axk + Buk + Ewk (1)

where xk is the system state, uk is the control input and {wk} is a
random disturbance sequence whose past values are known but
future values have a probabilistic description.

Core idea

Find a functional mapping from state {xk} to input uk which (a)
respects constraints and (b) optimises a performance goal, JN ,
assumed to take the following form: Given x0,

JN = E[VN |x0], VN
.

=
N−1∑
k=0

`(xk , uk) + Q(xN), (2)

where `(xk , uk) is the stage cost, Q(xN) a terminal cost; E denotes
expectation (conditional on x0 and over future disturbances).
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Disturbance Quantisation and Scenarios

Complexity

The above is a function optimisation problem. Such problems are
computationally intractable. Hence approximations are required.

• Restrict the disturbances to a finite set W .
=
{
w̄1, . . . , w̄W

}
,

with associated probabilities p̄1, . . . , p̄W .

• Draw S scenarios si for the future values of process {wk}:

{wk(si ), k = 0, . . . ,N − 1, i = 1, . . . ,S}

(There exists recent theory (R. Tempo et al) which allows one
to bound the number of scenarios needed to achieve a certain
level of probabilistic performance.)

• For each scenario sequence, pose a different input sequence:

{uk(si ), k = 0, . . . ,N − 1, i = 1, . . . ,S}
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Policy Constraints: What the Predicted Future Control
Sequence is Allowed to Depend Upon

We refine the notation to represent a predicted control sequence
associated with a disturbance scenario w0(si ), . . . , wN−1(si ):

ūP(k , si ) = uP[k,w0(si ), . . . ,wN−1(si )] (3)

The associated state trajectory is described by

xk+1(si ) = Axk(si ) + BūP(k , si ) + Ewk(si ); x0(si ) = x (4)

To complete the formulation we resolve the expectation in the cost
function (2) as follows:

JN =
N−1∑
k=0

S∑
i=1

[
`(xk(si ), ū

P(k , si ),wk(si )) + Q(xN(si ))
]
pi , (5)

where {wk(si )} takes the values w0(si ), . . . , wN−1(si ) with
associated probability pi .
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POMPC: Policy-Optimisation MPC

Recall:
ūP(k , si ) = uP[k,w0(si ), . . . ,wN−1(si )]

• In POMPC, the predicted input at time k is constructed to be
a function of the (predicted) state at time k .

• Equivalently, the predicted input at time k is a function of x0

and the disturbances that will have already appeared before
time k, namely w0, . . . , wk−1.

• Mathematically: for k = 0, . . . ,N − 1,

ūP(k, si ) = uPOMPC[k ,w0(si ), . . . ,wk−1(si ), •, . . . , •]

The ‘•’ denotes that the function takes the same value for all
possible arguments in that location.
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SOMPC: Sequence-Optimisation MPC

Recall:
ūP(k , si ) = uP[k,w0(si ), . . . ,wN−1(si )]

• In SOMPC one optimises a single (predicted) open loop input
sequence for all scenarios.

• Mathematically, for k = 0, . . . ,N − 1:

ūP(k , si ) = uSOMPC[k , •, . . . , •]

As before, ‘•’ denotes that the function takes the same value
for all possible arguments in that location.

• Note that the problem formulation remains stochastic since
the cost function is the expected value over all possible
disturbance scenarios.
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Special Case: Traditional (Average) MPC

Recall:
ūP(k , si ) = uP[k,w0(si ), . . . ,wN−1(si )]

• This is a variant of SOMPC where only one disturbance
scenario is considered, namely the ‘average’ disturbance.

• In this case the future disturbances are replaced by their
average value

wk(si ) = w̄
.

=
W∑
j=1

pj w̄j , k ≥ 0, ∀i = 1, . . . ,S .

• The resulting problem is purely deterministic.
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Other Constraints

• Input (hard) constraints:

uk ∈ U for all k ≥ 0

• State (hard) constraints:

xk ∈ X for all k ≥ 0

• Probabilistic (or chance) constraints:

P(xk ∈ X ) ≥ p

with p ∈ (0, 1).
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MAIN RESULTS
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SOMPC and Traditional (Average) MPC are Equivalent for
Linear Systems with Input Constraints and Quadratic Cost

Consider the previously defined linear system. The disturbance
wk ∈ Rq is a random variable with arbitrary distribution, and mean

E[wk ] = w̄k .

The cost function is specialised to the quadratic form

JN = E[VN |x0], VN = xTN QNxN +
N−1∑
k=0

(xTk Qxk + uTk Ruk),

for some matrices Q, R, QN of compatible dimensions.

Theorem

For a linear system and quadratic cost function, without state or
output constraints, SOMPC is equivalent to MPC using the
average disturbance value, that is, both optimisation problems
yield identical optimal control and state trajectories.

Mahdavi & Braslavsky & Seron Geometry of Stochastic MPC 22 / 40



Scalar Case: Equivalence Between POMPC, SOMPC and
Average MPC

Consider the special (scalar) case:

xk+1 = axk + buk + ewk , JN =
1

2
E
[ N∑
k=1

x2
k

∣∣∣x0

]
.

The constraints are

x0 given, |uk | ≤ ∆, ∆ > 0, wk ∈ W, ∀k = 0, 1, . . .

W contains a finite number of elements with probabilities in P.
Both W and P have symmetric properties with respect to zero:

W = {w̄1, . . . , w̄W } = {−σ1, . . . ,−σbW /2c, σ0, σbW /2c, . . . , σ1}
P = {p̄1, . . . , p̄W } = {ρ1, . . . , ρbW /2c, ρ0, ρbW /2c, . . . , ρ1}

Theorem

Consider the scalar system with the above formulation. Then
POMPC yields the same control input as Traditional (average)
MPC and SOMPC.
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More General Cases: Geometric Insights

Revision: In the deterministic case, for linear systems, quadratic
cost and linear constraints, the problem to solve in MPC is a
quadratic programme (QP):

uopt(x) = argmin
u∈Ruc

1

2
uTHu + uTFx

1
2uTHu + uTFx = constant
defines ellipsoids centred at the
unconstrained optimum
uopt
uc (x) = −H−1Fx .

Solving the QP amounts to
finding the smallest ellipsoid that
intersects the boundary of Ruc,
and uopt(x) is the point of
intersection.
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Explicit Solution as Minimum Distance Problem

The solution of the
QP is obtained by
partitioning R2 into
nine regions.

The first region is
the polytope Ruc.

Regions R1 to R8

are delimited by
lines that are
normal to the faces
of Ruc and pass
through its vertices.
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Explicit Solution as Minimum Distance Problem
The optimal constrained solution ũopt(x) is determined by the
region in which the optimal unconstrained solution ũopt

uc (x) lies.

• The solution in Ruc is
ũopt(x) = ũopt

uc (x);

• The solution in regions R1, R3,
R5 and R7 is simply equal to the
vertex that is contained in the
region.

• The solution in regions R2, R4,
R6 and R8 is defined by the
orthogonal projection of ũopt

uc (x)
onto the faces of Ruc.

As a result, we obtain a characterisation of the QP solution as

uopt(x) = H−1/2ũopt(x) if ũopt
uc (x) = −H−1/2Fx ∈ Ri ,

where ũopt(x) is an affine function.
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Geometric Insights in the Stochastic Case
The idea can be extended to the stochastic case if the future
disturbances are described in a tree structure.

Letting w i
k = w̄i ∈ W, for k = 0, . . . ,N − 1, i ∈ {1, . . . ,W }, the

disturbance sequences and associated probabilities are:

{ w1
0︸︷︷︸

w̄1

, w1
1︸︷︷︸

w̄1

. . . ,w1
N−3︸ ︷︷ ︸
w̄1

,w1
N−2︸ ︷︷ ︸
w̄1

}, with probability p1
.

= p̄N−2
1 p̄1

...

{ w1
0︸︷︷︸

w̄1

, w1
1︸︷︷︸

w̄1

. . . ,w1
N−3︸ ︷︷ ︸
w̄1

,wW
N−2︸ ︷︷ ︸
w̄W

}, with probability pW
.

= p̄N−2
1 p̄W

...
...
...
...
...

{wW
0 ,wW

1 . . . ,wW
N−3,w

1
N−2}, with probability pWN−1−W+1

.
= p̄N−2

W p̄1
...

{wW
0 ,wW

1 . . . ,wW
N−3,w

W
N−2}, with probability pWN−1

.
= p̄N−2

W p̄W
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Propagation of control inputs

• The control input in POMPC depends on previous values of
disturbances. Then it has a tree-like structure according to
the above disturbance patterns.

• There is:
• A single value u0 at time 0;
• W values for the input u1 at time 1, denoted by u1

1 , . . . , u
W
1 ,

which correspond to w1
0 , . . . ,w

W
0 .

• W 2 values for the input u2 at time 2: u1
2 , u2

2 , . . . , uW
2

2 , etc.
• The final control move, uN−1 has W N−1 possible values,

denoted by u1
N−1, . . . , u

W N−1

N−1 .

• This enumeration gives a total of
∑N−1

k=0 W k possibilities over
the prediction horizon.

• Only u0 is applied to the plant in an RHC fashion.
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Propagation of States and Outputs

The state xk and output yk = Cxk can be propagated in sequences
corresponding to the disturbance and control sequences:

y1 = Cx1 = C (Ax0 + Bu0 + Ew0),

y1
2
.

= Cx1
2
.

= C
[
A(Ax0 + Bu0 + Ew1

0 ) + Bu1
1 + Ew1

]
...

yW2
.

= CxW2
.

= C
[
A(Ax0 + Bu0 + EwW

0 ) + BuW1 + Ew1

]
y1

3
.

= Cx1
3
.

= C
[
A2(Ax0 + Bu0 + Ew1

0 ) + ABu1
1 + AEw1

1 + Bu1
2 + Ew2

]
...

yW
2

3
.

= CxW
2

3
.

= C
[
A2(Ax0 + Bu0 + EwW

0 ) + ABuW1 + AEwW
1 +

BuW
2

2 + Ew2

]
...
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Vector Notation for Inputs, Outputs and Disturbances

Stage vectors:

u0
.

= u0, uk−1
.

= col (u1
k−1, . . . , u

W k−1

k−1 ) ∈ RW k−1
, k = 2, . . . ,N

y1
.

= y1, yk
.

= col (y1
k , . . . , y

W k−1

k ) ∈ RW k−1
, k = 2, . . . ,N,

Total vectors:

UN
.

= col (u0,u1 . . . ,uN−1) ∈ RdN

YN
.

= col (y1, y2 . . . , yN) ∈ RdN

where dN
.

=
∑N−1

j=0 W j

Disturbance value vector:

s
.

= col (σ1, . . . , σbW /2c)
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Cost Function Evaluation

Consider for simplicity a scalar output yk and the ‘cheap’ control
cost function

JN =
1

2
E
[ N∑
k=1

y2
k

∣∣∣x0

]
The above cost can be expressed as

JN =
1

2
YT

NPNYN ,

with
PN

.
= blkdiag (πN1 , . . . , π

N
N ),

where each diagonal matrix πNk = diag
(
⊗k−1

~P
)
∈ RW k−1×W k−1

corresponds to each stage output vector yk .
The vector ~P contains the probabilities

~P
.

=
[
p̄1 . . . p̄W

]T
=
[
ρ1 . . . ρbW /2c ρ0 ρbW /2c . . . ρ1

]T
.
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Formulation of a QP
We write the QP problem

min
UN

1

2
UT

NΓT
NPNΓNUN︸ ︷︷ ︸
ŨT

N ŨN

+ UT
NΓT

NPN [ΛN ΩN ]︸ ︷︷ ︸
ŨT

NFN

[
x0

s

]
.

Including input constraints |uk | ≤ ∆, the associated QP in the new
coordinates takes the form

min
ŨN

1

2
ŨT

N ŨN + ŨT
N FN

[
x0

s

]

subject to : |Φ̃NŨN | = |Γ̄−1
N ŨN | ≤ ∆

1
...
1


The unconstrained (uc) solution is

Ũopt
N,uc = −FN

[
x0

s

]
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Explicit Solution

As for the deterministic case, the explicit solution is obtained by
partitioning the space of the decision variable, ŨN , into regions.
Each region, RN,`, of the partition has associated

• ‘active set’ `, containing the indices of the elements of UN

that hit the constrains; and

• ‘active vector’ ∆̄N,`, containing the value attained by each
constrained element (∆ or −∆).

Then the optimal constrained solution whenever Ũopt
N,uc ∈ RN,` is

given by

Ũopt
N = Φ̃T

N,`[Φ̃N,`Φ̃
T
N,`]
−1
[
∆̄N,` − Φ̃N,` Ũopt

N,uc

]︸ ︷︷ ︸
constraint correction term

+Ũopt
N,uc

where Φ̃N,` is the matrix formed by selecting the rows of the
constraint matrix with indices in `.
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Geometric Interpretation of Deterministic-Stochastic Gap

Consider N = 2 and the disturbance taking 2 values: σ and −σ.
The predicted controls, u0, u1

1 and u2
1 , are associated with the two

scenarios s1 = (u0, u
1
1) and s2 = (u0, u

2
1).

POMPC

U

U−

II

III

U
1

2

POMPC

U

U
UC

GAP

U
MPC

0

1

1

I

MPC

The grey ‘box’ is the
constraint set for POMPC.

The green surface inside
the box is the constraint
set for traditional MPC.
(It corresponds to adding
the constraint u2

1 = u1
1 .)

The cost level sets are
spheres centred at the
unconstrained
optimum, Uuc.
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Geometric Interpretation of Deterministic-Stochastic Gap

The constrained optimum correspond to the orthogonal projection
of Uuc on the facets of the constraint set.

POMPC

U

U−

II

III

U
1

2

POMPC

U

U
UC

GAP

U
MPC

0

1

1

I

MPC

Region I projects onto a common
edge between the two constraint
sets, so for all initial conditions
and disturbance values that yield
an unconstrained optimum in
region =⇒ POMPC =MPC

Region II projects on the edge
for MPC and on the top face of
the box (away from the edge) for
POMPC =⇒ POMPC 6=MPC

Region III projects on the green
plane (inside the box) for MPC
and on the box’s top face for
POMPC =⇒ POMPC 6=MPC
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Geometric Interpretation of Deterministic-Stochastic Gap

POMPC

U

U−

II

III

U
1

2

POMPC

U

U
UC

GAP

U
MPC

0

1

1

I

MPC

The performance gap is the
difference in distance from the
unconstrained optimum, as indicated
by the lines between the cost level
surfaces (only curves are shown for
clarity).

Note that the gap can be
interpreted as POMPC ‘bringing the
constraint set closer’ to the
unconstrained optimum.

Thus, the geometric interpretation of the explicit solution helps to
directly quantify the performance gap between the two strategies.

Even for this simple case, POMPC, SOMPC and MPC can give
either equal or different solutions depending on the initial
conditions and disturbance values.
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Numerical Example
The system matrices are taken as

A =

[
−a2 a2

0 −a1

]
, B =

[
0
b

]
, E =

[
0
e

]
, C =

[
1 0

]
The values are a1 = 1.4, a2 = 2.2, b = 1.5, e = 1, and control
constraint ∆ = 1.6. The disturbance takes the values −σ or σ
with equal probability. We take N = 3.
To illustrate, consider the first control move in one of the regions

Ũopt
0 =

a2 b(a1 + a2)

2 + (a1 + a2)2
∆ +

[
L1(a1, a2) L2(a1, a2)

]
x0+

−e(a1 + a2)2a2

2 + (a1 + a2)2
σ

The above expression holds for all (x0, σ) for which the
unconstrained optimal vector belongs to the considered region.
Note the presence of a term depending on σ, which distinguishes
this solution from Traditional (average) MPC.
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Numerical Example

Figure: Constraint set (pink polytope centred at zero) and region
corresponding to the third control saturated (yellow polytope). The
unconstrained optimal solution Ũopt

uc (red points) and the constrained
optimal solution Ũopt (blue points) are plotted for

x0 = −
[
6.3271 4.1454

]T
and σ ∈ [0, 0.5]. Right: cut on (ũ0, ũ

1
1) plane.

Mahdavi & Braslavsky & Seron Geometry of Stochastic MPC 38 / 40



The constraint set for POMPC (pink) contains the constraint set
for Traditional MPC (blue) in such way that the edges of the latter
set are contained in the boundary of the POMPC set.

Thus, for those values of (x0, σ) for which the POMPC solution
lies on the common edges, there is no cost gap between POMPC
and traditional MPC. In all other cases, there is a gap.
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Concluding Remarks

• In its general form, stochastic MPC amounts to solving a
functional optimisation problem. This problem is generally
intractable, except for some particular cases (e.g., LQG).

• Approximations and simplifications are needed to make the
problem tractable. For example: scenarios, disturbance
quantisation, controller parameterisation.

• Using scenarios the problem formulation becomes
deterministic. Easier to solve but usually the problem has
large dimension.

• Thus, it is relevant to identify conditions under which
deterministic and stochastic MPC give solutions that are
close, or even identical, to avoid the burden of trying to solve
a more difficult problem.

• The explicit solution to MPC and related geometric
interpretation is useful to compare the different strategies and
quantify the performance gap.
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