Commande Prédictive Non Linéaire pour la Stabilisation d'un Avion à Décollage Vertical (PVTOL)

A. CHEMORI & N. Marchand

Ahmed. Chemori(Nicolas. Marchand)@inpg.fr

Laboratoire d'Automatique de Grenoble. UMR 5528 BP46, Domaine Univesitaire, 38402 Saint Martin d'Hères

ENSAM, le 7 juin 2006

・ロト ・ 日ト ・ モト・ ・ モト・

Plan de la présentation

Problématique

- Description du PVTOL
- Exemples d'avions à décollage vertical

2 Literature associée

3 Approche proposée

- Origine de l'approche
- Principe de l'approche
- Dynamique résultante
- Analyse de Stabilité

4 Simulations

- Stabilisation
- Robustesse vis-à-vis des incertitudes

5 Conclusion

A. CHEMORI & N. Marchand

ENSAM, le 7 juin 2006

PVTOL : Planar Vertical Take-Off and Landing aircraft (Hauser & al., 1992)

Dynamique (modèle simplifié)

$$\ddot{x} = -\sin(\theta)u_1 + \varepsilon\cos(\theta)u_2 \qquad (1)$$

$$\ddot{y} = \cos(\theta)u_1 + \varepsilon\sin(\theta)u_2 - 1$$
 (2)

$$\ddot{\theta} = u_2$$
 (3)

・ロト ・四ト ・ヨト ・ヨト

 u_1 : la poussée, u_2 : le couple de roulis

Difficultés inhérentes

- Dynamique non linéaire, instable en boucle ouverte
- Sous-actionné (moins d'actionneurs que de d.d.l)
- Non minimum de phase (dynamique des zéros instable)

Problématique Literature associée Approche proposée

Exemples d'avions à décollage vertical

・ロト ・四ト ・ヨト ・ヨト

HARRIER AV-8B (BRITISH AEROSPACE, UK)

Longueur	14.12m
Hauteur	3.55m
Largeur	9.25m
Poids(vide)	$\simeq 7000 kg$
Réacteur	Rolls-Royce Pegasus Mk 105
Poussée	96.75kN

HARRIER YAV-8B (MCDONNELL DOUGLAS, USA)

00

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion
Approches	de commande	existantes		

- Nombreuses approches ont été proposées
- Deux philosophies :
 - Linéarisation Entrée/Sortie et platitude
 - Lyapunov
- Toutes les approches sont basées sur un/des changement/s de coordonnées
- Beaucoup supposent qu'il n'y a pas de couplage ($\varepsilon = 0$)
- Peu vérifient la robustesse vis à vis d'une incertitude dans le paramètre de couplage
- Seul (Zavala et al. 2003) gère la positivité de la poussée et une borne sur le couple de roulis

回 と く ヨ と く ヨ と

A. CHEMORI & N. Marchand

ENSAM, le 7 juin 2006

<ロ> (四) (四) (三) (三)

Literature associée

Approche proposée

Approche proposée

7

Э

Problématique 00 Literature associée

Approche proposée

Simulations

Conclusion

Origine de l'approche

Problématique 00	Literature associée	Approche proposée	Simulations 00000000	Conclusion
Principe de	e l'approche			

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ x(t^+) = \Delta(x(t^-)) \end{cases} \Rightarrow \begin{cases} \dot{\xi} = A\xi + Bv \quad ; \quad \xi \in \mathbb{R}^{n_{\xi}}\\ \dot{\eta} = Z(\xi, \eta, v) \quad ; \quad \eta \in \mathbb{R}^{n_{\eta}} \end{cases}$$

- ξ : coordonnées linéarisées $\quad (A,B)$ commandable
- η : dynamique interne

Problématique 00	Literature associée	Approche proposée 000 ● 00000	Simulations 00000000	Conclusion
Dynamique	résultante			

$$p_k = \hat{p}(\eta(t_k^-), \xi^f, \eta^f) := \min_{p \in \mathcal{P}} \|F(\eta(t_k^-), p, \xi^f) - \eta^f\|_Q^2$$

remplacé dans la dynamique interne, donne

$$\eta(t_{k+1}^-) = F_{cl}(\eta(t_k^-), \bar{x}^f) \quad ; \quad \bar{x}^f := (\xi^f, \eta^f)$$

Un système discret autonome

C'est la dynamique interne projetée sur la section de Poincaré

Sous une forme multi pas (évaluée après k_0 sauts)

 $\eta(t_{k+k_0}^-) = F_{cl}^{k_0}(\eta(t_k^-), \bar{x}^f)$

Originalité : cycles limites multiples

・ 回 ト ・ ヨ ト ・ ヨ ト

Problématique 00	Literature associée	Approche proposée 000●00000	Simulations 00000000	Conclusion
Dynamique	résultante			

$$p_k = \hat{p}(\eta(t_k^-), \xi^f, \eta^f) := \min_{p \in \mathcal{P}} \|F(\eta(t_k^-), p, \xi^f) - \eta^f\|_Q^2$$

remplacé dans la dynamique interne, donne

$$\eta(t_{k+1}^-) = F_{cl}(\eta(t_k^-), \bar{x}^f) \quad ; \quad \bar{x}^f := (\xi^f, \eta^f)$$

Un système discret autonome

C'est la dynamique interne projetée sur la section de Poincaré

Sous une forme multi pas (évaluée après k_0 sauts)

 $\eta(t^-_{k+k_0}) = F^{k_0}_{cl}(\eta(t^-_k), \bar{x}^f)$

Originalité : cycles limites multiples

・ロト ・四ト ・ヨト ・ヨト

Problématique 00	Literature associée	Approche proposée 00000000	Simulations 00000000	Conclusion

Analyse de Stabilité

Э

▲御▶ ▲ 臣▶ ▲ 臣▶ …

00	Literature a	ssociee .	Approcne propose ○○○○○●○○○	e Simu	0000	Conclusion
Définition						
Poursuite exa	acte \Rightarrow	$\xi(t_k^-) = \xi$	f			

La stabilité du système dépend de la convergence de la séquence

Convergence vers une trajectoire k0-cyclique

 $\lim_{j \to \infty} \|\eta(t_{jk_0}^-) - \eta^f\| = 0$

• Convergence vers un voisinage d'une trajectoire k0-cyclique $\lim_{i \to \infty} ||\eta(t_{ik_{*}}^{-}) - \eta^{f}|| \leq \varepsilon$

・ロト ・四ト ・ヨト ・ヨト

00	Literature a	SSOCIEE AP	000€000	00000000	Conclusion
Définition					
Poursuite exa	$acte \Rightarrow$	$\xi(t_k^-) = \xi^f$			

La stabilité du système dépend de la convergence de la séquence

Convergence vers une trajectoire k0-cyclique

 $\lim_{j\to\infty}\|\eta(t_{jk_0}^-)-\eta^f\|=0$

Onvergence vers un voisinage d'une trajectoire k0-cyclique

 $\lim_{j \to \infty} \|\eta(t_{jk_0}^-) - \eta^f\| \le \varepsilon$

<回> < E> < E>

Lemme

Tout système continu classique de dimension n sous la forme

$$\dot{x} = f(x) + g(x)u$$

peut être étendu à un système hybride de dimension (n+1) s'écrivant sous la forme

$$\begin{aligned} \dot{x} &= f(x) + g(x)u \quad \text{si } x \notin \mathcal{S}_0 \\ x(t^+) &= \Delta(x(t^-)) \quad \text{si } x \in \mathcal{S}_0 \end{aligned}$$

Preuve : cf. Chemori & Alamir (IJC, 2005), Chemori & Alamir (Mechatronics, 2006)

・ロト ・同ト ・ヨト ・ヨト

Problématique 00	Literature associée	Approche proposée 000000000	$\mathbf{Simulations}$	Conclusion

Application

Stabilisation d'un avion à décollage vertical

▲□ → ▲ □ → ▲ □ →

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion
Application	n à la stabilisa	ation d'un PV	TOL	
Linéarisation	n partielle :			
$\left[\begin{array}{c} \ddot{y}_1\\ \ddot{y}_2\end{array}\right.$	$\left] = \left[\begin{array}{c} \ddot{x} \\ \ddot{y} \end{array} \right] = \left[\begin{array}{c} 0 \\ -1 \end{array} \right]$	$\left] + \left[\begin{array}{cc} -\sin(\theta) & \varepsilon \\ \cos(\theta) & \varepsilon \end{array} \right]$	$ \begin{array}{c} \cos(\theta)\\\sin(\theta)\end{array}\right]\left[\begin{array}{c} u_1\\ u_2\end{array}\right] $	
$D = \begin{bmatrix} -\sin \\ \cos(e^{i\theta}) \end{bmatrix}$	$ \begin{array}{l} (\theta) & \varepsilon \cos(\theta) \\ \theta) & \varepsilon \sin(\theta) \end{array} \right] : \mathrm{ma} $	atrice de découplage	e (non singulière	e)
	$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$	$ \begin{array}{c} \varepsilon \cos(\theta) \\ \varepsilon \sin(\theta) \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \right)^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left(\left[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\left[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\left[\begin{array}[\begin{array}[\begin{array}[\begin{array}{c} 0 \\ 1 \end{array} \right]^{-1} \left[\left[\left[\begin{array}[\begin{array}[\[\begin{array}[\\ 0 \end{array} \right]^{-1} \left[\left[\left[\left[\begin{array}[\[\[\\ 0 \end{array} \right]^{-1} \left[$	$\left] + \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] \right)$	
	$egin{array}{rcl} \ddot{x}&=&v_1\ ec{y}&=&v_2\ ec{ heta}&=&rac{1}{arepsilon}(\sin(ec{ heta})) \end{array}$	$(heta) + \cos(\theta)v_1 + \sin(\theta)v_1$	$(heta)v_2)$	
$\xi = \begin{bmatrix} x \\ \eta & = \end{bmatrix} \begin{bmatrix} heta \end{bmatrix}$	$ \begin{array}{ccc} \dot{x} & y & \dot{y} \end{array} \Big]^{T} \\ \dot{\theta} \ \big]^{T} \qquad \qquad \Rightarrow \qquad $	$\dot{\xi} = A\xi + B\eta$ $\dot{\eta} = Z(\xi, \eta, v)$	ψ ; $\xi \in \mathbb{R}^{n_{\xi}}$ η ; $\eta \in \mathbb{R}^{n_{\eta}}$	

◆□ > ◆□ > ◆三 > ◆三 > ○ 2 ○ ○ 2 ○

roblématique Literature associée Approche proposée **Simulations** Cor 0 00000000 **000**00000

Simulation 1 : stabilisation

$$\xi^0 = [1, 1, 0.2, -0.5]^T \quad \eta^0 = [\frac{\pi}{6}, \frac{\pi}{9}]^T \quad \xi^f = [0, 0, 0, 0]^T \quad \eta^f = [0, 0]^T$$

Paramètre	Signification	valeur
t_f	longueur de l'horizon	1.85 sec
Q	matrice de pondération	Diag(1, 0.3)
p	paramètre d'optimisation	$x(t_f/4)$

<ロ> <四> <四> <四> <四> <四</p>

Problématique 00 Literature associée

Approche proposée

Simulations

Conclusion

Simulation 1 : stabilisation

(日) (四) (王) (王)

Problématique 00 Literature associée

Approche proposée

<ロ> (日) (日) (日) (日) (日)

Conclusion

Simulation 1 : stabilisation

ATOIRE IATIQUE BLE

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 0000000	Conclusion
Simulation	1 : stabilisatio	on		

Animation graphique

ł

Simulation 2 : robustesse envers des incertitudes

 $\varepsilon = \varepsilon + \Delta_{\varepsilon} \quad ; \quad \Delta_{\varepsilon} = 10\%$

・ロト ・四ト ・ヨト ・ヨト

Problématique Literature associée Approche proposée Simulations Conclus 00 Conclus 000000000 Conclus 000000000 Conclus

Simulation 2 : robustesse envers des incertitudes

 $\varepsilon = \varepsilon + \Delta_{\varepsilon} \quad ; \quad \Delta_{\varepsilon} = 10\%$

A. CHEMORI & N. Marchand

ENSAM, le 7 juin 2006

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion

Autres applications

Systèmes mécaniques sous actionnés

Literature associée Approche proposée 00000000

Simulations

Le pendule inversé ECP 505

 $\begin{cases} m_1 \ \ddot{r} + m_1 l_0 \ddot{\theta} - m_1 r \dot{\theta}^2 - m_1 g \sin \theta = F(t) \\ m_1 l_0 \ddot{r} + J_0(r) \ddot{\theta} + 2m_1 r \dot{r} \dot{\theta} - (m_1 l_0 + m_2 l_c) g \sin \theta - m_1 g \cos \theta = 0 \end{cases}$

peut être mis sous la forme :

 θ : l'angle de la barre verticale

- r : position du c.d.g de la barre glissante
- m_1 : la mass de la barre glissante
- m_2 : la mass de la barre verticale
 - l_0 : longueur de la barre verticale
 - l_c : position du c.d.g de la barre verticale
- $J_0: = J_1 + J_2 + m_1(l_0^2 + r^2) + m_2 l_c^2$
- J_1 : moment d'inertie de la barre glissante J_2 : moment d'inertie de la barre verticale

・ロト ・四ト ・ヨト ・ヨト

$$x:=egin{pmatrix} r & heta & \dot{r} & \dot{ heta} \end{pmatrix}^T$$

 $\dot{x} = f(x) + q(x)u$

Problématique 00	Literature associée	Approche proposée 000000000	Simulations	Conclusion
Scénario A	: stabilisation			

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

0.5

1

1.5

A. CHEMORI & N. Marchand

0.5

0

Problématique 00	Literature associée	Approche proposée 000000000	Simulations ○○○○○○●	Conclusion
Scénario B	• génération	de cycles limit	es stables	

ŧ

・ロト ・四ト ・ヨト ・ヨト

Marchand A. CHEMORI

2

Time [sec]

6

8

-1 **'**೧ , -200

ſ٥

2

Time [sec]

VATOIRE WATIQUE

8

6

< Ξ

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion
Conclusion				
Problème tra	ité : • Stabilisa (PVTOL)	tion d'un avion à dé	collage vertical	L

◆□ > ◆□ > ◆三 > ◆三 > ○ 2 ○ ○ 2 ○

Problématique 00	Literature associée	Approche proposée 000000000	$\begin{array}{c} \mathbf{Simulations} \\ 00000000 \end{array}$	Conclusion
Conclusion	1			
Problème tr	aité : • Stabilisa (PVTOL)	tion d'un avion à dé	collage vertical	
Confronté à	 Dynamique Instable en h Sous actionn Non minimu Contraintes 	non linéaire poucle ouverte lement m de phase à respecter		

◆□ > ◆□ > ◆三 > ◆三 > ○ 2 ○ ○ 2 ○

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion
Conclusion				
Problème tra	ité : • Stabilisat (PVTOL)	tion d'un avion à dé	collage vertical	l
Confronté à :	 Dynamique n Instable en b Sous actionne Non minimum Contraintes à 	non linéaire oucle ouverte ement m de phase à respecter		
Solution prop	oosée : • Comm dimension	ande prédictive non	linéaire de fait	ole

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Literature associee	Approche proposée 000000000	$\mathbf{Simulations}$	Conclusion
ité : • Stabilisa (PVTOL)	tion d'un avion à dé	écollage vertica	1
 Dynamique a Instable en b Sous actionn Non minimute Contraintes a 	non linéaire poucle ouverte ement m de phase à respecter		
oosée : • Comm dimension	ande prédictive non	linéaire de fail	ole
abilité : • Outi	l graphique basé su	r la section de l	Poincaré
	 ité : • Stabilisa (PVTOL) • Dynamique : • Instable en b • Sous actionn • Non minimu • Contraintes : • Contraintes : • osée : • Comm dimension abilité : • Outi ations : • Appl sous-actionne • Applications 	 ité : • Stabilisation d'un avion à dé (PVTOL) • Dynamique non linéaire • Instable en boucle ouverte • Sous actionnement • Non minimum de phase • Contraintes à respecter posée : • Commande prédictive non dimension abilité : • Outil graphique basé sur sous-actionnés • Applications en robotique 	 ité : • Stabilisation d'un avion à décollage vertical (PVTOL) • Dynamique non linéaire • Instable en boucle ouverte • Sous actionnement • Non minimum de phase • Contraintes à respecter • Sosée : • Commande prédictive non linéaire de fail dimension abilité : • Outil graphique basé sur la section de l'ations : • Applications aux systèmes mécaniques sous-actionmés • Applications en robotique

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion
Conclusion				
Problème tra	ité : • Stabilisa (PVTOL)	tion d'un avion à dé	collage vertical	Ĺ
Confronté à :	 Dynamique n Instable en b Sous actionn Non minimute Contraintes a 	non linéaire ooucle ouverte ement m de phase à respecter		
Solution prop	oosée : • Comm dimension	ande prédictive non	linéaire de fait	ole
Analyse de st Autres applic	cabilité : • Outi cations : • Appl sous-actionne • Applications	l graphique basé sur ications aux système és en robotique	la section de l es mécaniques	Poincaré

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Problématique 00	Literature associée	Approche proposée 000000000	Simulations 00000000	Conclusion

Merci pour votre attention

・四・・モー・ ・ モ・