Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Fault tolerant control command based on set separation

F. Stoican, S. Olaru

SUPELEC, France, Automatic Control Department (florin.stoican@supelec.fr, sorin.olaru@supelec.fr)

22 January 2010

Project and collaborations

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detectior and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

- PhD student: F. Stoican (C3S)
- project related with CDSC center (Complex Dynamic Systems and Control, The University of Newcastle, Australia): J.A. De Dona and M.M. Seron
- practical approach, a fault tolerant control device for a position control plant: in collaboration with Blegrade University (S. Marinkovic et M. Nesic)
- periodic discussions: VIDAMES group

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Intro

Multisensor schemes

Invariant sets

Fault detection and isolation

Sensor recovery

Example

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Intro

Fault tolerant control

Multisensor schemes

Invariant sets

Fault detection and isolation

Sensor recovery

Example

Conclusions

Fault tolerant control command based on set separation

Fault tolerant control

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Goals

- fault detection and isolation
- command and optimisation
 - performance optimisation
 - constraint verification

Methodology

- characterisation of invariant sets in healthy/faulty cases for residual signals
- fault detection using set membership techniques

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusion

Intro

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Fault detection and isolation

Sensor recovery

Example

Multisensor scheme with common feedback gain

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

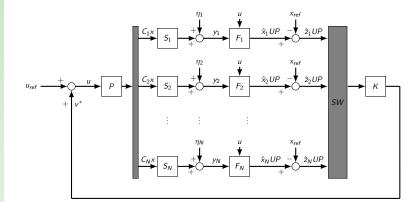
Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



Model description – plant

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

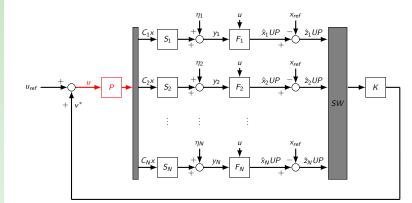
Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions



$$x^+ = Ax + Bu + Ew$$

2

Model description – sensors

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

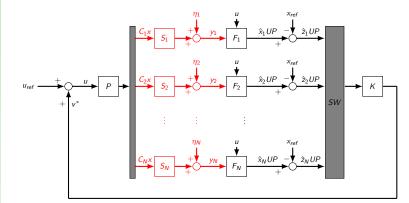
Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions



 $\begin{array}{ll} \mbox{healthy behavior:} & y_i = C_i x + \eta_i \\ \mbox{faulty behavior:} & y_i^F = \eta_i^F \end{array}$

Fault tolerant control command based on set separation

F. Stoican, S. Olaru

Model description – estimators

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

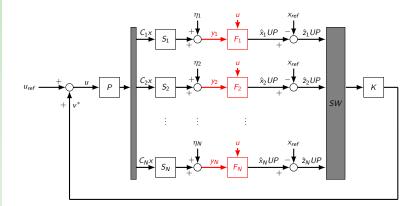
Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$\hat{x}_i^+ = A\hat{x}_i + Bu + L_i\left(y_i - C_i\hat{x}_i\right)$$

Model description – updates

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

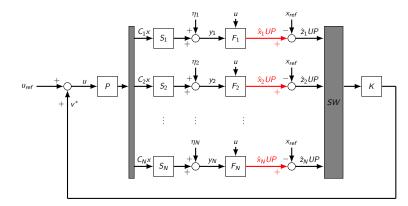
Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$\hat{x}_i^{UP} = \hat{x}_i + M_i \left(y_i - C_i \hat{x}_i \right)$$

Model description – tracking error

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

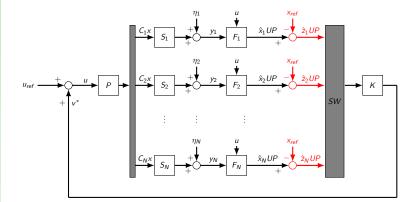
Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$\hat{z}_{i}^{UP} = \hat{x}_{i}^{UP} - x_{ref}$$

Model description – controller

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

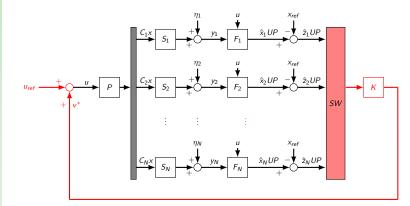
Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$J(\hat{z},v) = \hat{z}'Q\hat{z} + v'Rv + (A\hat{z} + Bv)'P(A\hat{z} + Bv)$$

Assumptions

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

- A is stabilisable and pair (A, B) is controllable
- pairs (A, C_i) are detectable for $i = 1, \ldots, N$
- adittive disturbances and the measurements perturbations are considered to be delimited by bounded polyhedral sets

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Modelling equations

plant dynamics

$$x^+ = Ax + Bu + Ew$$

reference signal

$$x_{ref}^+ = Ax_{ref} + Bu_{ref}$$

plant tracking error

$$z^+ = x - x_{ref} = Az + B\underbrace{(u - u_{ref})}_{v} + Ew$$

estimations and updates of the state

$$\hat{x}_{i}^{+} = (A - L_{i}C_{i})\hat{x}_{i} + Bu + L_{i}(y_{i} - C_{i}\hat{x}_{i}) \hat{x}_{i}^{UP} = \hat{x}_{i} + M_{i}(y_{i} - C_{i}\hat{x}_{i})$$

estimations of the tracking error

$$\hat{z}_i^{UP} = \hat{x}_i + M_i \left(y_i - C_i \hat{x}_i\right) - x_{ref}$$

Fault tolerant control command based on set separation

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Switching criteria

At every step a pair sensor-estimator is selected to compute the command action s.t. the following cost function is minimised

$$J\left(\hat{z}^{UP},v\right) = \left(\hat{z}^{UP}\right)'Q\hat{z}^{UP} + \left(A\hat{z}^{UP} + Bv\right)'P\left(A\hat{z}^{UP} + Bv\right)$$

for $\hat{z}^{UP} \in \hat{Z}^{UP} = \left\{\hat{z}_1^{UP},\ldots,\hat{z}_N^{UP}\right\}$ the tracking error
estimation
The command action is then defined as

$$u^* = u_{ref} - K\hat{z}^*$$

with

$$\begin{aligned} \hat{z}^* &= \underset{\hat{z}^{UP}}{\operatorname{argmin}} \left\{ \hat{z}^{UP,T} P \hat{z}^{UP} \, \hat{z}^{UP} \in \hat{z}^{UP} \right\} \\ &= \underset{\hat{z}^{UP}}{\operatorname{argmin}} \left\{ J \left(\hat{z}^{UP}, v \right) \, \hat{z}^{UP} \in \hat{z}^{UP}, \mathbb{R}^m \right\} \end{aligned}$$

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

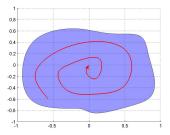
Stability under normal functioning

Error tracking signal

$$z^+ = (A - BK)z$$

autonomous system

bounded perturbations



All trajectories converge assymptotically to origin

Stability under normal functioning

Error tracking signal

autonomous system

bounded perturbations

$$z^+ = (A - BK)z + \begin{bmatrix} E & BK(I - M_IC_I) & -BKM_I \end{bmatrix}$$

Multisensor scheme with common feedback gain

Fault tolerant control

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

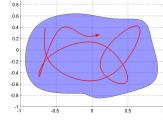
Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

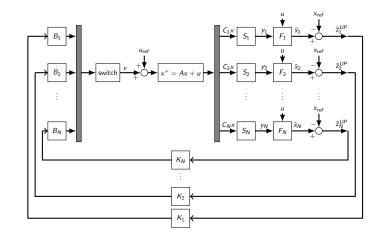


Xı

All trajectories converge assymptotically to a bounded region

F. Stoican, S. Olaru

Multisensor scheme with multiple feedback gains



Intro

Fault tolerant control

Multisenso schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

The switch mechanism choses at each instant of time a sensor-feedback-actuator loop

Fault tolerant control command based on set separation

Assumptions

Intro

- Fault tolerant control
- Multisensor schemes
- Multisensor scheme with common feedback gain
- Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

- A is stabilisable and pairs (A, B_i) are controllable for i = 1, ..., N
- pairs (A, C_i) are detectable for $i = 1, \ldots, N$
- adittive disturbances and the measurements perturbations are considered to be delimited by bounded polyhedral sets

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

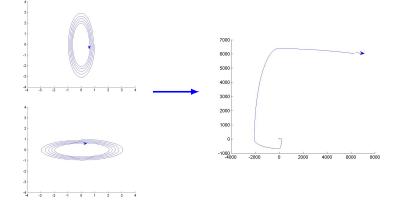
Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Switched systems stability

Note (Branicky (1994)): A switched system may not be stable even if all subsystems are stable



Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

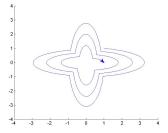
Dwell time stability

Let there be the switched autonomous system

$$x^+ = A_i x$$

Theorem (Geromel and Colaneri (2006))

Assume there exist P_i s.t. $\begin{cases}
P_i > 0 \\
A'_i P_i A_i + P_i \leq 0 \\
A'_i ^T P_j A_i ^T < P_i \quad \forall j \neq i
\end{cases}$



then, the system is globally stable for any switch occuring at moments greater or equal with T

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain

Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

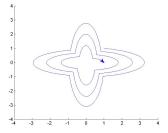
Dwell time stability

Let there be the switched autonomous system

$$x^+ = A_i x$$

Theorem (Geromel and Colaneri (2006))

Assume there exist P_i s.t. $\begin{cases}
P_i > 0 \\
A'_i P_i A_i + P_i \leq 0 \\
A'_i {}^T P_j {A_i} {}^T < P_i \quad \forall j \neq i
\end{cases}$



then, the system is globally stable for any switch occuring at moments greater or equal with T

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Intro

Multisensor schemes

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

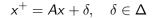
Sensor recovery

Example

Conclusions

Fault tolerant control command based on set separation

Let there be a dynamic system defined by



Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Fault tolerant control

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

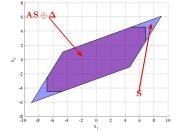
Sensor recovery

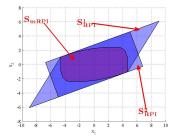
Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions



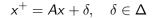


Definition (RPI)

A set Ω is robust positively invariant (RPI) if and only if

$$x \in \Omega \to x^+ \in \Omega$$

Let there be a dynamic system defined by



Fault tolerant control

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

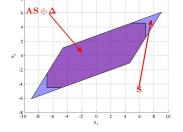
Sensor recovery

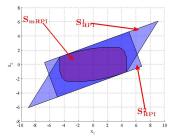
Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

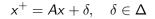




Definition (mRPI)

A set Ω is minimal robust positively invariant (mRPI) if it is contained in all RPI sets.

Let there be a dynamic system defined by



Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Fault tolerant control

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

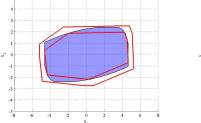
Example

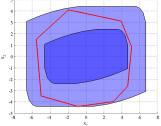
Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

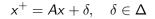
Definition (mRPI *e*-approximations)

- ϵ -inner approximations: $\Phi \subseteq \Omega \subseteq \Phi \oplus \mathbb{B}_{\infty}^{n}(\epsilon)$
- ϵ -outer approximations: $\Omega \subseteq \Phi \subseteq \Omega \oplus \mathbb{B}_{\infty}^{n}(\epsilon)$





Let there be a dynamic system defined by



Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Fault tolerant control

Invariant sets

Invariance notions Nonconvex cases

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

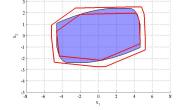
Sensor recovery

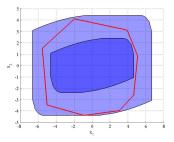
Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions





Definition (mRPI *e*-approximations)

- ϵ -inner approximations: $\Phi \subseteq \Omega \subseteq \Phi \oplus \mathbb{B}^n_{\infty}(\epsilon)$
- ϵ -outer approximations: $\Omega \subseteq \Phi \subseteq \Omega \oplus \mathbb{B}_{\infty}^{n}(\epsilon)$

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Ultimate bounds

Theorem (Ultimate bounds – discrete case)

Consider the stable system $x^+ = Ax + Bu$. Let there be the Jordan decomposition $A = V\Lambda V^{-1}$ and assume that $|u(k)| \leq \bar{u}, \forall k \geq 0$. Then there exists $I(\epsilon)$ such that for all $k \geq I$:

$$|V^{-1}x(k)| \leq (I - |\Lambda|)^{-1} |V^{-1}B|\bar{u} + \epsilon |x(k)| \leq |V|(I - |\Lambda|)^{-1} |V^{-1}B|\bar{u} + |V|\epsilon$$

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Ultimate bounds

Theorem (Ultimate bounds – discrete case)

Consider the stable system $x^+ = Ax + Bu$. Let there be the Jordan decomposition $A = V\Lambda V^{-1}$ and assume that $|u(k)| \leq \overline{u}, \forall k \geq 0$. Then there exists $I(\epsilon)$ such that for all $k \geq I$:

$$|V^{-1}x(k)| \leq (I - |\Lambda|)^{-1} |V^{-1}B|\bar{u} + \epsilon |x(k)| \leq |V|(I - |\Lambda|)^{-1} |V^{-1}B|\bar{u} + |V|\epsilon$$

Proof (?): We can write

$$x^{+} = Ax + Bu = V\Lambda V^{-1}x + Bu$$
$$V^{-1}x^{+} = \Lambda V^{-1}x + V^{-1}Bu$$
$$|z^{+}| \leq |\Lambda z + V^{-1}Bu| \leq |\Lambda|z + |V^{-1}B|\bar{u}$$

and, then:

$$|V^{-1}x| \le (I - |\Lambda|)^{-1} |V^{-1}B|\bar{u} + \epsilon$$

Exemplification for a \mathbb{R}^2 case

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

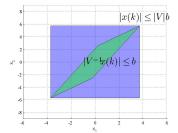
Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

$$x(k+1) = Ax(k) + Bu(k)$$

where
$$|u(k)| \leq 1$$



$$A = \begin{bmatrix} 0.0241 & 0.4184 \\ -0.7869 & 1.2759 \end{bmatrix} \qquad b = \begin{bmatrix} 0.90 \\ 1.75 \end{bmatrix}$$
$$B = \begin{bmatrix} 0.8462 \\ 0.5252 \end{bmatrix} \qquad |V|b = \begin{bmatrix} 3.70 \\ 5.68 \end{bmatrix}$$

mRPI outer approximations

Note: An alternative formulation of a mRPI set can be given

$$\Omega = \bigoplus_{i=0}^{\prime = \infty} A^i \Delta$$

This permits the computation of a sequence of RPI outer approximations of the mRPI

 $\Phi_{k+1} = A\Phi_k \oplus \Delta$

Theorem (Olaru et al. (2008))

set

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

feedback gain Multisensor scheme

Invariance notions Nonconvex cases

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

is true

$$\Omega \subset \Phi_{s} \subset \Omega \oplus \mathbb{B}_{p}^{n}(\epsilon)$$

For any $\epsilon \geq 0$ exists $s \in \mathbb{N}^+$ such that the following relation

Fault tolerant control command based on set separation

F. Stoican, S. Olaru

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

- Fault detection and isolation
- Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

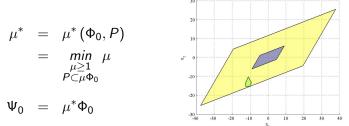
Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

mRPI with region inclusion

Theorem (Olaru et al. (2008))

The RPI construction Φ_0 can be scaled to include a predefined region P such that the invariance is preserved



An iterative sequence can be constructed for further enhancements

$$\Psi_{k+1} = \mathit{ConvHull} \left\{ \mathsf{P}, \mathsf{A}\Psi_k \oplus \Delta
ight\}$$

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

NOTICOTIVEX Cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

mRPI with region inclusion

Theorem (Olaru et al. (2008))

The RPI construction Φ_0 can be scaled to include a predefined region P such that the invariance is preserved

$$u^* = \mu^* (\Phi_0, P)$$
$$= \min_{\substack{\mu \ge 1 \\ P \subset \mu \Phi_0}} \mu$$

$$\Psi_0 = \mu^* \Phi_0$$

An iterative sequence can be constructed for further enhancements

$$\Psi_{k+1} = ConvHull \{P, A\Psi_k \oplus \Delta\}$$

1

Nonconvex cases

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions

Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

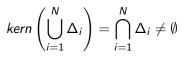
Example

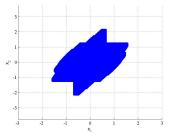
Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Let there be a system switched in perturbations:

$$\begin{array}{rcl} x^+ &=& Ax + \delta_i \\ \delta_i &\in& \Delta_i, \ i \in \{1, \dots, N\} \end{array}$$





The mRPI set is star-shaped (Rubinov and Yagubov (1986)) since the intersection of star shaped sets is also a star shaped as long as their kernels intersect.

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Intro

Multisensor schemes

Invariant sets

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Example

Fault scenarios

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios

Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

total output outages

$$y_i = C_i x + \eta_i \quad \xrightarrow{FAULT} \quad y_i = 0 \cdot x + \eta_i^F$$
$$y_i = C_i x + \eta_i \quad \xleftarrow{RECOVERY} \quad y_i = 0 \cdot x + \eta_i^F$$

 more complex fault scenarios (a signature matrix for each type of fault)

$$y_i = \prod_i \left[C_i x + \eta_i \right] + \left[I - \prod_i \right] \eta_i^F$$

Fault detection and isolation strategy

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Fault detection and isolation (FDI) strategies can employ

- probability approach (sensor fusion)
- robust approach (set membership)
- The robust detection requires
 - sets that define the healthy/faulty functioning of the sensors
 - a method of acknowledging the recovery of previously fallen sensors

Requirements

at least one operational sensor must be acknowledged as healthy at each instant of time

Fault tolerant control command based on set separation

Residual signals

The residual signal (Blanke et al. (2006)), composed from all the measurable quantities associated to the i^{th} sensor can be defined:

$$r_i = \hat{z}_i^{UP} - \left(I - M_i C_i\right) \hat{z}_i$$

Reminder:

 \blacktriangleright $z = x - x_{ref}$ $\hat{x}_i^{Up} = \hat{x}_i + M_i(y_i - C_i \hat{x}_i)$ • $\hat{z}_i^{Up} = \hat{x}_i^{Up} - x_{ref}$

Residual signals values for a sensor

healthy case:

$$r_i^H = M_i C_i z + M_i \eta_i$$

faulty case:

$$r_i^F = -M_i C_i x_{ref} + M_i \eta_i^F$$

F. Stoican, S. Olaru

26 / 44

Sensor partitioning

sufficient conditions

Ultimate bounds vs. Sensor recovery FTC simulation

Fault tolerant control

feedback gain Multisensor scheme

Nonconvex cases

Set membership FDI Invariant sets for FDI Set separation

Fault tolerant control

feedback gain Multisensor scheme

Nonconvex cases

Set membership FDI Invariant sets for FDI Set separation

Sensor partitioning sufficient conditions

Ultimate bounds vs. Sensor recovery FTC simulation

$$\hat{x}_i^{Up} = \hat{x}_i + M_i(y_i - C_i \hat{x}_i)$$

$$\hat{z}_i^{Up} = \hat{x}_i^{Up} - x_{ref}$$

 \blacktriangleright $z = x - x_{ref}$

Reminder:

Residual signals

Residual signals values for a sensor

healthy case:

$$R_i^H = M_i C_i S_z \oplus M_i \Pi_i$$

faulty case:

$$R_i^F = \{-M_i C_i X_{ref}\} \oplus M_i \Pi_i^F$$

The residual signal (Blanke et al. (2006)), composed from all the measurable quantities associated to the i^{th} sensor can be defined:

 $r_i = \hat{z}_i^{UP} - (I - M_i C_i) \hat{z}_i$

Aditional sets

Intro

Fault tolerant control

Multisenso schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

- ► Π_i, Π^F_i, W bounding boxes for sensor and plant noises
- ► X_{ref} set for the reference signal
- \tilde{S}_i invariant set for the state estimation error
- S_z invariant set for the plant tracking error

State estimation error:

$$\tilde{x}_i^+ = x^+ - \hat{x}_i^+ = (A - L_i C_i) \tilde{x}_i + \begin{bmatrix} E & -L_i \end{bmatrix} \begin{bmatrix} w \\ \eta_i \end{bmatrix}$$

Plant tracking error:

$$z^{+} = (A - BK) z + \begin{bmatrix} E & BK (I - M_{I}C_{I}) & BKM_{I} \end{bmatrix} \begin{vmatrix} w \\ \tilde{x}_{I} \\ \eta_{I} \end{vmatrix}$$

Aditional sets

- Intro
- Fault tolerant control
- Multisensor schemes
- Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains
- Invariant sets
- Invariance notions Nonconvex cases
- Fault detection and isolation
- Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

- ► Π_i, Π^F_i, W bounding boxes for sensor and plant noises
- X_{ref} set for the reference signal
- \hat{S}_i invariant set for the state estimation error
- S_z invariant set for the plant tracking error

State estimation error:

$$\tilde{x}_i^+ = x^+ - \hat{x}_i^+ = (A - L_i C_i) \tilde{x}_i + \begin{bmatrix} E & -L_i \end{bmatrix} \begin{bmatrix} w \\ \eta_i \end{bmatrix}$$

Plant tracking error:

$$z^{+} = (A - BK) z + \begin{bmatrix} E & BK (I - M_{I}C_{I}) & BKM_{I} \end{bmatrix} \begin{vmatrix} w \\ \tilde{x}_{I} \\ \eta_{I} \end{vmatrix}$$

Aditional sets

- feedback gain Multisensor scheme with multiple
- Nonconvex cases
- Set membership FDI Invariant sets for FDI Set separation

Sensor partitioning sufficient conditions

Ultimate bounds vs. Sensor recovery FTC simulation

• Π_i , Π_i^F , W = bounding boxes for sensor and plant noises

- X_{ref} set for the reference signal
- \tilde{S}_i invariant set for the state estimation error
- S_z invariant set for the plant tracking error

State estimation error:

$$\tilde{x}_{i}^{+} = x^{+} - \hat{x}_{i}^{+} = (A - L_{i}C_{i})\tilde{x}_{i} + \begin{bmatrix} E & -L_{i} \end{bmatrix}$$

Plant tracking error:

$$z^+ = (A - BK) z + \begin{bmatrix} E & BK (I - M_I C_I) & BKM_I \end{bmatrix}$$

W η_i

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

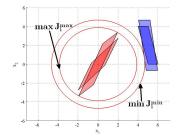
Conclusions

Implicit separation

Theorem (Seron et al. (2008))

The closed loop dynamics remain stable in the presence of faults if

 $\max_{i} J_{i}^{max} \leq \min_{i} J_{i}^{min}$



$$J_{i}^{min} = min\left\{\left(r_{i}^{H}\right)'r_{i}^{H}, r_{i}^{H} \in R_{i}^{H}\right\}$$
$$J_{i}^{max} = max\left\{\left(r_{i}^{F}\right)'r_{i}^{F}, r_{i}^{F} \in R_{i}^{F}\right\}$$

Implicit separation – nonconvex case

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

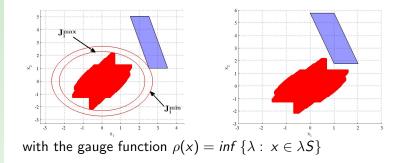
Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Separation through barrier using gauge functions

$$J_{gauge}\left(\hat{z}_{i}^{UP}\right) = \bar{J}_{LQ} \cdot \left\{ \left\lceil \rho_{H}\left(\hat{z}_{i}^{UP}\right) \right\rceil - 1 \right\} + J_{LQ} \cdot \left\lceil \rho_{H}\left(\hat{z}_{i}^{UP}\right) \right\rceil$$



Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

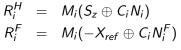
Ultimate bounds vs. mRPI Sensor recovery FTC simulation

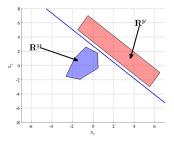
Conclusions

Explicit separation

Each sensor is tested separately

$$R_i^H \cap R_i^F = \emptyset, \quad i = \{1, \cdots, N\}$$





Theorem (Gritzmann and Klee (1994))

Any two non intersecting convex sets can be separated by a hyperplane

Outline

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Intro

Multisensor schemes

Invariant sets

Fault detection and isolation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Recovery problem

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Conditions for recovery acknowledgement

- $\hat{z}_j \in \hat{S}_H^j$ tracking error
- $\hat{z}_{j}^{UP} \in \hat{S}_{H}^{UP,j}$ updated tracking error
- $ilde{x}_j \in ilde{S}_j$ estimation error

$\tilde{x}_j = x - \hat{x}_j$ is not measurable

Strategies

- necessary conditions
- sufficient conditions

Sensor partitioning

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

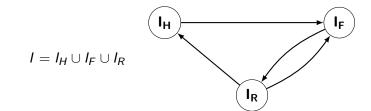
Sensor recovery

Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$I_{H} = \left\{ i \in I : \tilde{x}_{i} \in \tilde{S}_{i}, \hat{z}_{i} \in \hat{S}_{H}^{i}, \hat{z}_{i}^{UP} \in \hat{S}_{H}^{UP,i} \right\}$$
$$I_{F} = \left\{ i \in I : \left(\hat{z}_{i} \notin \hat{S}_{H}^{i} \right) \lor \left(\hat{z}_{i}^{UP} \notin \hat{S}_{H}^{UP,i} \right) \right\}$$
$$I_{R} = \left\{ i \in I : \tilde{x}_{i} \notin \tilde{S}_{i}, \hat{z}_{i} \in \hat{S}_{H}^{i}, \hat{z}_{i}^{UP} \in \hat{S}_{H}^{UP,i} \right\}$$

Sensor transitions

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

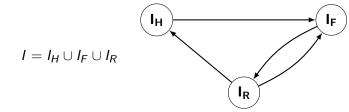
Sensor recovery

Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation



$$I_{H} \rightarrow I_{F} \text{ If } \{i \in I_{H}\} \land \{\hat{z}_{i}^{UP} \in \hat{S}_{HF}^{i}\} \text{ then}$$

$$I_{H} = I_{H} \setminus \{i\}; \ I_{F} = I_{F} \cup \{i\}$$

$$I_{F} \rightarrow I_{R} \text{ If } \{i \in I_{F}\} \land \{\hat{z}_{i}^{UP} \in \hat{S}_{H}^{i}\} \text{ then}$$

$$I_{F} = I_{F} \setminus \{i\}; \ I_{R} = I_{R} \cup \{i\}$$

$$I_R \to I_F \quad \text{If } \{i \in I_R\} \land \{\hat{z}_i^{UP} \notin S'_H\} \text{ then } \\ I_R = I_R \setminus \{i\}; \ I_F = I_F \cup \{i\}$$

$$I_R \to I_H \quad \text{If } \{i \in I_R\} \land \{\hat{z}_i^{UP} \in \hat{S}_H^i\} \land \{\tilde{x}_i \in \tilde{S}_i\} \ \text{then } I_R = I_R \setminus \{i\}; \ I_H = I_H \cup \{i\}$$

Necessary and sufficient conditions

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

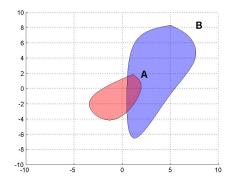
Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions



Let ${\mathcal A}$ and ${\mathcal B}$ be twho sets, then

- $\alpha \in \mathcal{A}$, a necessary condition for $\alpha \in \mathcal{B}$ is $\mathcal{A} \cap \mathcal{B} \neq \emptyset$
- $\alpha \in \mathcal{A}$, a sufficient condition for $\alpha \in \mathcal{B}$ is $\mathcal{A} \subseteq \mathcal{B}$

Necessary and sufficient conditions

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

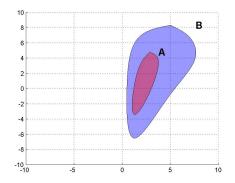
Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions



Let ${\mathcal A}$ and ${\mathcal B}$ be twho sets, then

- $\alpha \in \mathcal{A}$, a necessary condition for $\alpha \in \mathcal{B}$ is $\mathcal{A} \cap \mathcal{B} \neq \emptyset$
- $\alpha \in \mathcal{A}$, a sufficient condition for $\alpha \in \mathcal{B}$ is $\mathcal{A} \subseteq \mathcal{B}$

Sensor recovery – I

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

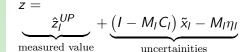
Sensor recovery

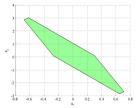
Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation





Sensor recovery – I

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

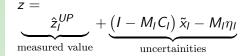
Sensor recovery

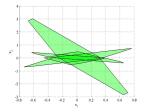
Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation





$$z \in \underbrace{\bigcap_{l \in I_{H}} \left[\left\{ \hat{z}_{l}^{UP} \right\} \oplus \left(I - M_{l}C_{l} \right) \tilde{S}_{l} \oplus \left(-M_{l} \right) N_{l} \right]}_{I_{l_{H}}}$$
$$\hat{z}_{j}^{UP} + \left(I - M_{j}C_{j} \right) \tilde{x}_{j} - M_{j}\eta_{j} \in I_{l_{H}}$$

Sensor recovery – I

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

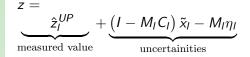
Sensor recovery

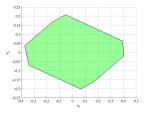
Sensor partitioning and transitions

Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation





$$z \in \underbrace{\bigcap_{l \in I_{H}} \left[\left\{ \hat{z}_{l}^{UP} \right\} \oplus \left(I - M_{l}C_{l} \right) \tilde{S}_{l} \oplus \left(-M_{l} \right) N_{l} \right]}_{I_{H}}$$

$$\tilde{x}_{j} \in \underbrace{\left(I - M_{j}C_{j} \right)^{-1} \left[\left\{ -\hat{z}_{j}^{UP} \right\} \oplus M_{j}N_{j} \oplus I_{H} \right]}_{Z_{I_{H}}^{j}}$$

Sensor recovery – II

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions

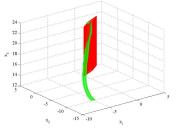
Necessary and sufficient conditions

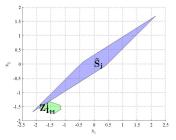
Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Necessary condition: $\tilde{S}_j \cap Z^j_{l_H} \neq \emptyset$ Sufficient condition: $\tilde{S}_j \supseteq Z^j_{l_H}$





Sensor recovery – II

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions

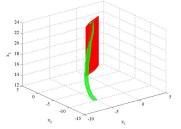
Necessary and sufficient conditions

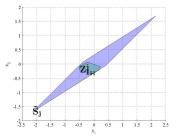
Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Necessary condition: $\tilde{S}_j \cap Z^j_{I_H} \neq \emptyset$ Sufficient condition: $\tilde{S}_j \supseteq Z^j_{I_H}$





Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Outline

Intro

Multisensor schemes

Invariant sets

Fault detection and isolation

Sensor recovery

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Example – Ultimate bounds vs. mRPI

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

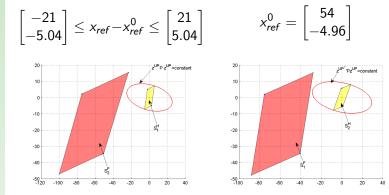
Example

Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions

For ellipsoidal separation with ultimate bounds sets the reference is



Example – Ultimate bounds vs. mRPI

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

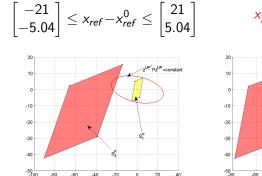
Example

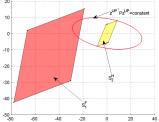
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions

For ellipsoidal separation with ultimate bounds sets the reference is





Example – Ultimate bounds vs. mRPI

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

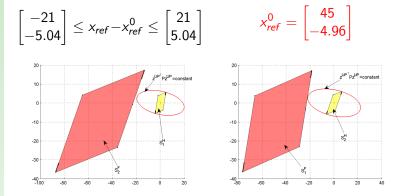
Example

Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions

For ellipsoidal separation with mRPI approximations the reference is



Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

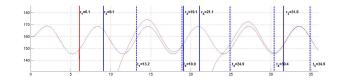
Sensor partitioning and transitions Necessary and sufficient conditions

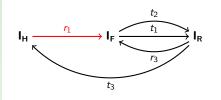
Example

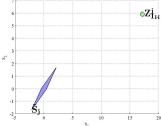
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

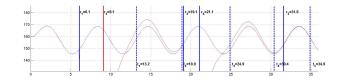
Sensor partitioning and transitions Necessary and sufficient conditions

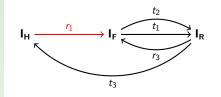
Example

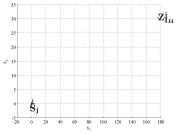
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

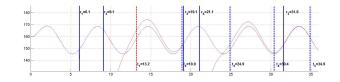
Sensor partitioning and transitions Necessary and sufficient conditions

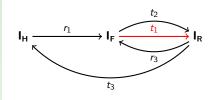
Example

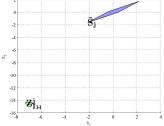
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

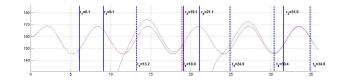
Sensor recovery

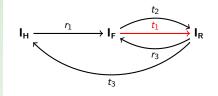
Sensor partitioning and transitions Necessary and sufficient conditions

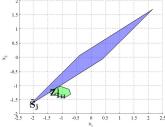
Example

Ultimate bounds vs. mRPI

Sensor recovery FTC simulation







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

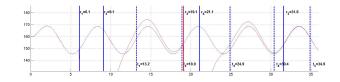
Sensor partitioning and transitions Necessary and sufficient conditions

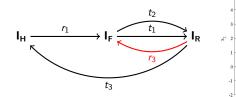
Example

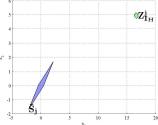
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

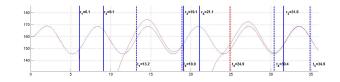
Sensor recovery

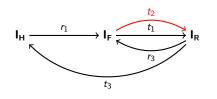
Sensor partitioning and transitions Necessary and sufficient conditions

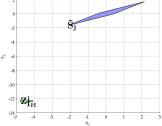
Example

Ultimate bounds vs. mRPI

Sensor recovery FTC simulation







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

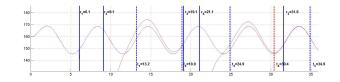
Sensor recovery

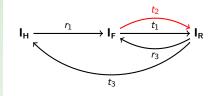
Sensor partitioning and transitions Necessary and sufficient conditions

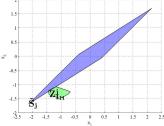
Example

Ultimate bounds vs. mRPI

Sensor recovery FTC simulation







Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

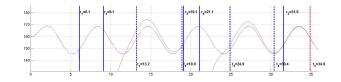
Sensor partitioning and transitions Necessary and sufficient conditions

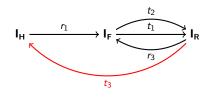
Example

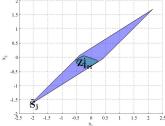
Ultimate bounds vs. mRPI

Sensor recovery FTC simulation

Conclusions







Example – FTC simulation

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery

FTC simulation

Conclusions

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Advantages

- good balance between computational effort and precision
- robust fault detection
- comparable with classical sensor fusion schemes in terms of performance

Disadvantages

only abrupt faults discussed

Future developments

- nonconvex perturbations and nonlinear systems
- tighter approximations of the mRPI set

References I

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

- M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and Fault-Tolerant Control. *Heidelberg, Springer-Verlag Berlin Heidelberg*, 2006.
- M.S. Branicky. Stability of switched and hybrid systems. In *IEEE* Conference on Decision and Control, volume 4, pages 3498–3498. Institute of electrical engineers INC (IEE), 1994.
- JC Geromel and P. Colaneri. Stability and stabilization of discrete time switched systems. *International Journal of Control*, 79(7): 719–728, 2006.
- P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II. Volume and mixed volumes. NATO ASI Series C Mathematical and Physical Sciences-Advanced Study Institute, 440:373–466, 1994.

Sorin Olaru, José A. De Doná, and María M. Seron. Positive invariant sets for fault tolerant multisensor control schemes. In *Proceedings of 17th IFAC World Congress 2008 17th IFAC World Congress 2008*, Seoul, South Korea, 2008.

References II

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

AM Rubinov and AA Yagubov. The space of star-shaped sets and its applications in nonsmooth optimization. *Math. Programming Study*, 29:175–202, 1986.

María M. Seron, Xiang W. Zhuo, José A. De Doná, and John J. Martínez. Multisensor switching control strategy with fault tolerance guarantees. *Automatica*, 44(1):88–97, 2008. ISSN 0005-1098.

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Thank you!

Intro

Fault tolerant control

Multisensor schemes

Multisensor scheme with common feedback gain Multisensor scheme with multiple feedback gains

Invariant sets

Invariance notions Nonconvex cases

Fault detection and isolation

Fault scenarios Set membership FDI Invariant sets for FDI Set separation

Sensor recovery

Sensor partitioning and transitions Necessary and sufficient conditions

Example

Ultimate bounds vs. mRPI Sensor recovery FTC simulation

Conclusions

Questions ?