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Goals

» fault detection and isolation
» command and optimisation

» performance optimisation
» constraint verification

Methodology

» characterisation of invariant sets in healthy/faulty cases
for residual signals

» fault detection using set membership techniques

Fault tolerant control command based on set separation



Outline

Intro

Intro

Fault tolerant control

Multisensor

schemes i
Multisensor scheme Multisensor schemes

feedback gain H H 1
M“'h““"fi’.““e”‘e Multisensor scheme with common feedback gain
feedback gains Multisensor scheme with multiple feedback gains
Invariant sets

Invariance notions
Nonconvex cases

Invariant sets

Fault detection

and isolation

Fault scenarios

Sl Fault detection and isolation
Invariant sets for FDI

Set separation

Sensor recovery
Sensor partitioning SenSOF recovery
and transitions

Necessary and
sufficient conditions

Example Examp|e
Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Conclusions

Fault tolerant control command based on set separation



Multisensor scheme with common feed-
back gain

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme
with common
feedback gain
Multisensor scheme
with multiple
feedback gains
Invariant sets
Invariance notions Uref
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery

Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Fault tolerant control command based on set sep: i S. Olaru



Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain

Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions
Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Model description — plant




Model description — sensors

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme
with common
feedback gain
Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions Uref
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery

Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.

mRPI -

Sensor recovery healthy behQVIOI’ _yl = CIX + ’I’/,
FTC simulation F F

faulty behavior: yi =mn;

Conclusions

Fault tolerant control command based on set sep: i o an, S. Olaru



Model description — estimators

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme
with common
feedback gain
Multisensor scheme
with multiple
feedback gains
Invariant sets
Invariance notions Uref
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery

Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.

mRPI A+ ~ ko
Sensor recovery X = AXI + BU + LI (y, - CIXI)
FTC simulation
Conclusions

Fault tolerant control comr




Model description — updates

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme
with common
feedback gain
Multisensor scheme
with multiple
feedback gains
Invariant sets
Invariance notions Uref
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery

Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.

mRPI A~ ~ 2
Sensor recovery XIUP == XI + MI (yl - CIXI)

FTC simulation

Conclusions

Fault tolerant control command based on set sep:



Model description — tracking error

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain

Multisensor scheme
with multiple
feedback gains
Invariant sets

Invariance notions Uref
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery

Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.

mRPI ~ ~
Sensor recovery ZUP == XUP - Xref'

FTC simulation

Conclusions




Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain
Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Fault tolerant control comn

Model description — controller

Uref

J(2,v) =2'Qz + V'Rv + (A2 + Bv) P(Az + Bv)

an, S. Olaru

d based on set sep.




Assumptions

Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain

Multisensor scheme
with multiple

Feadoack s A is stabilisable and pair (A, B) is controllable
e pairs (A, C;) are detectable for i =1,..., N

Invariance notions

v

v

Nonconvex cases

v

adittive disturbances and the measurements

Fault detection

and isolation perturbations are considered to be delimited by
Fault scenarios
Set membership FDI bounded polyhedral sets

Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Fault tolerant control command based on set separation



Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain

Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Modelling equations

> plant dynamics

xT = Ax + Bu + Ew

v

reference signal

X:;f = AXyef + Blrer

v

plant tracking error

ZT =X — Xpef = Az + B (U — Uper) +Ew
~—_——

v

v

estimations and updates of the state
)’?I+ = (A — L,'C,')),?,' + Bu+ L; (y,- — C,'f(,')
5P = &%+ Mi(yi — G%)

v

estimations of the tracking error

AUP  « N
277 =% + M (yi — Gi&i) — Xref
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Switching criteria

At every step a pair sensor-estimator is selected to compute
the command action s.t. the following cost function is
minimised

!/ /!
J(29%,v) = (29F) Q2UP+ (A2 + Bv) P (A2 + Bv)
for 2UP € ZUP = {3UP .

estimation
The command action is then defined as

,2,(\,”3} the tracking error

U = Uper — K2*

with
2* = argmin {QUP’TP2UP 2UP ¢ QUP}
sUP
= argmin {J <2UP, v) 2UP ¢ QUP,R’"}
sUP

F. Stoican, S. Olaru
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Stability under normal functioning

Error tracking signal

zt = (A - BK)z

> autonomous system

» bounded perturbations

All trajectories converge assymptotically to origin
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Switched systems stability

Note (Branicky (1994)): A switched system may not be

stable even if all subsystems are stable
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Dwell time stability
Let there be the switched autonomous system

xT = Aix

Theorem (Geromel and Colaneri (2006))

Assume there exist P; s.t. 3
P >0 !
A:-P,'A,' 4+ P; <0 .
ATPAT <P Yj#i :

then, the system is globally stable for any switch occuring at
moments greater or equal with T
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Dwell time stability
Let there be the switched autonomous system

xT = Aix

Theorem (Geromel and Colaneri (2006))

Assume there exist P; s.t. 2 /N
P; >0 S | Vo | P

ALPA; + P; <0 N——— =
ATPAT <P Vj#i : NS

then, the system is globally stable for any switch occuring at
moments greater or equal with T

Fault tolerant control command based on set separation



Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme
with common
feedback gain

Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Outline
Intro
Multisensor schemes

Invariant sets
Invariance notions
Nonconvex cases

Fault detection and isolation
Sensor recovery
Example

Conclusions

Fault tolerant control command based on set se



Intro

Fault tolerant control

Multisensor
schemes
Multisensor scheme

with common
feedback gain
Multisensor scheme
with multiple
feedback gains

Invariant sets

Invariance notions
Nonconvex cases

Fault detection
and isolation

Fault scenarios

Set membership FDI
Invariant sets for FDI
Set separation

Sensor recovery
Sensor partitioning
and transitions

Necessary and
sufficient conditions

Example

Ultimate bounds vs.
mRPI

Sensor recovery
FTC simulation

Conclusions

Definitions
Let there be a dynamic system defined by

xT=Ax+4, €A

%
%
°

& 1N
L

T

Definition (RPI)
A set Q is robust positively invariant (RPI) if and only if

xeQ—oxteq
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Definitions
Let there be a dynamic system defined by

xT=Ax+4, €A

%
%
°

& 1N
L

T

Definition (mRPI)

A set Q is minimal robust positively invariant (mRPI) if it is
contained in all RPI sets.
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Definitions
Let there be a dynamic system defined by

xT=Ax+4, €A

5 5
4 ap
3 3

@0 &0
4 -
2 2
3 3
4 4
s 5 4 2 2 4 6 3 i) 5 4 2 0 2

Definition (mRPI e-approximations)

» c-inner approximations: ® C Q C & @ B (e)
» e-outer approximations: Q C ® C Q @ B (e)
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Ultimate bounds

Theorem (Ultimate bounds — discrete case)

Consider the stable system x* = Ax + Bu. Let there be the
Jordan decomposition A= VAV ™! and assume that

\u(k)| < @, Vk > 0. Then there exists | (€) such that for all
k>1:

[V7hx(K)]
[x(K)]

IN

(I = |A)"YVIBla +e
V(I = [A)HVIBlu + Ve

IN
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Ultimate bounds

Theorem (Ultimate bounds — discrete case)

Consider the stable system x* = Ax + Bu. Let there be the
Jordan decomposition A= VAV ™! and assume that

\u(k)| < @, Vk > 0. Then there exists | (€) such that for all
k>1:

[V7hx(K)]
[x(K)]

Proof (?7):
We can write
xT = Ax+Bu=VAV~ix+Bu
Voixt AV~ ix+ V1By
Az + V71Bu| < |ANz+ |V !Bla

IN

(I = |A)"YVIBla +e
V(I = [A)HVIBlu + Ve

IN

N
_*
A

and, then:
V] < (1= AV BlE + €

F. Stoican, S. Olaru
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mRPI outer approximations

Note: An alternative formulation of a mRPI set can be given

=00
Q= @ AN
i=0

This permits the computation
of a sequence of RPI outer
approximations of the mRPI
set

Oy = AP DA

Theorem (Olaru et al. (2008))

For any € > 0 exists s € N such that the following relation
is true
QC o, CQDB,(e)
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mRPI with region inclusion

Intro Theorem (Olaru et al. (2008))
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P The RPI construction ®q can be scaled to include a
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Nonconvex cases

e Let there be a system switched in perturbations:
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Fault detection and isolation strategy

Fault detection and isolation (FDI) strategies can employ
» probability approach (sensor fusion)
» robust approach (set membership)

The robust detection requires

» sets that define the healthy/faulty functioning of the
sensors

» a method of acknowledging the recovery of previously
fallen sensors

Requirements

> at least one operational sensor must be acknowledged
as healthy at each instant of time
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Residual signals

The residual signal (Blanke et al. (2006)), composed from all the
measurable quantities associated to the it" sensor can be defined:
ri=2""—(1-MG)z

Reminder:
> Z =X — Xpef
> 3P =%+ Mi(y — Cx)

AU ~U
> z,'p:X,'p_Xref

Residual signals values for a sensor

> healthy case:
H_
r = M,'C,'Z + M,‘?];

» faulty case:
rf = —M;Cixrer + Minf
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Aditional sets

> n,nf,w - bounding boxes for sensor and plant

noises
> X, — set for the reference signal
> 3,- — invariant set for the state estimation error
» S, —invariant set for the plant tracking error

State estimation error:
% :X+—A-+:(A—L;C,'))?,'+ [E —L,‘] w

i i

Plant tracking error:

7t =(A—BK)z+[E BK(I—MC) BKM] |%
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Implicit separation

Theorem (Seron et al. (2008))

The closed loop dynamics remain stable in the presence of

faults if

4 max Jma e
V74

max J* < min Jmin
i i Z \ /
b Nl
* 6 -4 2 0 4 6

. !/
J™M = min (r,-H) i e Rl
/
JM = max (r,-F ) rforF e Rl

Fault tolerant control command based on set sep:



Implicit separation — nonconvex case
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Explicit separation
Each sensor is tested separately

RENRF =0, i={1,--- N}

H 1" ’
R,- = M,'(Sz ® C,'N,') #
Rf = Mi(—Xer®GNF)

Theorem (Gritzmann and Klee (1994))

Any two non intersecting convex sets can be separated by a
hyperplane
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Recovery problem

Conditions for recovery acknowledgement
» 2 € gf_, — tracking error
> 2J.UP € 3#’3” — updated tracking error

» X € 5; — estimation error
Xj = x — X; is not measurable

Strategies
» necessary conditions

» sufficient conditions
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For ellipsoidal separation with ultimate bounds sets the
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Advantages

» good balance between computational effort and
precision

» robust fault detection

» comparable with classical sensor fusion schemes in
terms of performance

Disadvantages
» only abrupt faults discussed
Future developments
» nonconvex perturbations and nonlinear systems

» tighter approximations of the mRPI set
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