Nonlinear Model Predictive Control
More than an introduction...

Mazen Alamir

1Laboratoire d’Automatique de Grenoble
CNRS-INPG-UJF, France.
mazen.alamir@inpg.fr

Atelier technique
Regardless of the control strategy being used, the following keywords has to be addressed:

- **System model**
 (State, control, measurement, disturbance)

- **Constraints**
 (on state, control)

- **Performance index**
 (Operational cost, energy consumption, tracking quality)

- **Stability**

- **Robustness**
Current state

Desired state
Nonlinear Model Predictive Control

Current state

Desired state

State constraint

Current state
Nonlinear Model Predictive Control

Current state
Desired state
Performance index:
\[\text{Length of the steering path} \]
At decision instant $k = 0$, the optimal solution is S_0.
Current state

Desired state

Go on one step ahead …
Measure the present situation & Compute a new optimal solution
Go on one step ahead
Measure the present situation & Compute a new optimal solution
go on one step ahead
Measure the present situation & Compute a new optimal solution
Go on one step ahead
Nonlinear Model Predictive Control

- Desired state
- Initially computed trajectory
- Closed loop trajectory

M. Alamir (–)
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
- Apply the beginning of the strategy until the next decision instant
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
- Apply the beginning of the strategy until the next decision instant
- Re-evaluate the situation
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
- Apply the beginning of the strategy until the next decision instant
- Re-evaluate the situation
- Recompute the best strategy
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
- Apply the beginning of the strategy until the next decision instant
- Re-evaluate the situation
- Recompute the best strategy
- Apply the first part until the next decision instant
A simple feedback principle (informal)

- At each decision instant, evaluate the situation
- Based on the evaluation, compute the best strategy
- Apply the beginning of the strategy until the next decision instant
- Re-evaluate the situation
- Recompute the best strategy
- Apply the first part until the next decision instant
- Keep doing
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 \[u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ \ldots \ u^0(k + i; x(k)) \ \ldots) \]
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots \ u^0(k + i; x(k)) \ldots)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots \ u^0(k + i; x(k)) \ldots)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \quad u^0(k + 1; x(k)) \quad \ldots \quad u^0(k + i; x(k)) \quad \ldots)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
- Based on $x(k + 1)$, compute the best sequence of actions:
 $$u^0(x(k + 1)) := (u^0(k + 1; x(k + 1)) \quad u^0(k + 2; x(k + 1)) \quad \ldots)$$
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots u^0(k + i; x(k)) \ldots)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
- Based on $x(k + 1)$, compute the best sequence of actions:
 $$u^0(x(k + 1)) := (u^0(k + 1; x(k + 1)) \ u^0(k + 2; x(k + 1)) \ldots)$$
- Apply the control $u^0(k + 1; x(k + 1))$ on the sampling period $[k + 1, k + 2]$
A simple feedback principle (Formal)

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $\mathbf{u}^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots \ u^0(k + i; x(k)) \ldots)$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
- Based on $x(k + 1)$, compute the best sequence of actions:
 $\mathbf{u}^0(x(k + 1)) := (u^0(k + 1; x(k + 1)) \ u^0(k + 2; x(k + 1)) \ldots)$
- Apply the control $u^0(k + 1; x(k + 1))$ on the sampling period $[k + 1, k + 2]$
- \ldots
A sampled state feedback

- **At decision instant** k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 \[
 u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots \ u^0(k + i; x(k)) \ldots)
 \]
- **Apply the control** $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
- Based on $x(k + 1)$, compute the best sequence of actions:
 \[
 u^0(x(k + 1)) := (u^0(k + 1; x(k + 1)) \ u^0(k + 2; x(k + 1)) \ldots)
 \]
- **Apply the control** $u^0(k + 1; x(k + 1))$ on the sampling period $[k + 1, k + 2]$
- ...
A sampled state feedback

- **At decision instant** k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \; u^0(k + 1; x(k)) \; \ldots \; u^0(k + i; x(k)) \; \ldots)$$
- **Apply the control** $u^0(k; x(k))$ **on the sampling period** $[k, k + 1]$

A state feedback

We have defined a sampled state feedback

$$u(k) = u^0(k; x(k))$$
A key task ...

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, **compute the best sequence of actions**:
 $$u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ldots \ u^0(k + i; x(k)) \ldots)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$
- At decision instant $k + 1$, measure the state $x(k + 1)$
- Based on $x(k + 1)$, **compute the best sequence of actions**:
 $$u^0(x(k + 1)) := (u^0(k + 1; x(k + 1)) \ u^0(k + 2; x(k + 1)) \ldots)$$
- Apply the control $u^0(k + 1; x(k + 1))$ on the sampling period $[k + 1, k + 2]$
- ...
A key task . . .

- At decision instant k, measure the state $x(k)$
- Based on $x(k)$, compute the best sequence of actions:
 $$u^0(x(k)) := (u^0(k; x(k)) \ u^0(k + 1; x(k)) \ ... \ u^0(k + i; x(k)) \ ...)$$
- Apply the control $u^0(k; x(k))$ on the sampling period $[k, k + 1]$

We need an optimization problem

$$\mathcal{P}(x(k)) : \min_u \left\{ V(x(k), u) \mid u \in \mathcal{U}(x(k)) \right\}$$

$u^0(x(k))$ is a solution of $\mathcal{P}(x(k))$
How to define & Solve $\mathcal{P}(x)$ for our example?
Step 1 : Write down the system model

State of the system: \(x = \begin{pmatrix} x_1 \\ x_2 \\ \theta \\ V \end{pmatrix} \)

Desired state

\[V = \sqrt{\dot{x}_1^2 + \dot{x}_2^2} \]
Step 1: Write down the system model

State of the system: \(x = \begin{pmatrix} x_1 \\ x_2 \\ \theta \\ V \end{pmatrix} \)

\[
\begin{align*}
\dot{x}_1 &= x_4 \cos(x_3) \\
\dot{x}_2 &= x_4 \sin(x_3) \\
\dot{x}_3 &= u_1 \\
\dot{x}_4 &= u_2
\end{align*}
\]

\[V = \sqrt{\dot{x}_1^2 + \dot{x}_2^2} \]
Step 1: Write down the system model

State of the system: $x = \begin{pmatrix} x_1 \\ x_2 \\ \theta \\ V \end{pmatrix}$

\[
\begin{align*}
\dot{x}_1 & = x_4 \cos(x_3) \\
\dot{x}_2 & = x_4 \sin(x_3) \\
\dot{x}_3 & = u_1 \\
\dot{x}_4 & = u_2
\end{align*}
\]

\[V = \sqrt{\dot{x}_1^2 + \dot{x}_2^2}\]

function xdot=car(t,x)
 global u_glob
 xdot=zeros(4,1);
 xdot(1)=x(4)*cos(x(3));
 xdot(2)=x(4)*sin(x(3));
 xdot(3)=u_glob(1);
 xdot(4)=u_glob(2);
 return
Step 2 : Obtain the sampled-time model

Given the continuous system

\[\dot{x} = f_c(x, u) \]

Compute the implicit \(\tau \)-discrete dynamics

\[x^+(k) = x(k + 1) = f(x(k), u(k)) \]

where \(x(k + 1) \) is the solution at instant \(\tau \) of

\[\dot{\xi} = f_c(\xi, u(k)) \quad ; \quad \xi(0) = x(k) \]
function xdot=car(t,x)
 global u_glob
 xdot=zeros(4,1);
 xdot(1)=x(4)*cos(x(3));
 xdot(2)=x(4)*sin(x(3));
 xdot(3)=u_glob(1);
 xdot(4)=u_glob(2);
 return

function xplus=car_d(x,u,tau)
 global u_glob
 u_glob=u;
 [tt,xx]=ode45(@car,[0,tau],x);
 xplus=xx(end,:);
 return
Some notations before we continue

Consider

\[x^+ = f(x, u) \]

\[u := (u(0), u(1), \ldots, u(N-1)) \]

Notation

\[x^u(\cdot, x(k)) := \left\{ x(k + i) \right\}_{i=0}^{N} \]

\[x(k+i) = f(x(k+i-1), u(i-1)) \]
Recall

\[P(x(k)) : \min_u \left\{ V(x(k), u) \mid u \in U(x(k)) \right\} \]

\[u^0(x(k)) \quad \text{is a solution of} \ P(x(k)) \]
Step 3 : Write down the constraints
Step 3 : Write down the constraints

The final constraint

\[x^u(N; x(k)) - x^d = 0 \]

Obstacle avoidance

\[r - \min_{i \in \{1,2\}} d(x^u(\cdot; x(k)), c_i) \leq 0 \]

Saturation constraint

\[u \in [u_{min}, u_{max}]^N \]

Desired state

\[x^d := \begin{pmatrix} x^d_1 \\ x^d_2 \\ 0 \end{pmatrix} \]

Obstacle avoidance

\[r = \sqrt{(\xi_1 - \eta_1)^2 + (\xi_2 - \eta_2)^2} \]

Saturation constraint
Step 3 : Write down the constraints

Equality constraints

\[G_1(u, x(k)) = 0 \]

Inequality constraints

\[G_2(u, x(k)) \leq 0 \]

\[U(x(k)) := \{ u \mid G_1 = 0 \text{ and } G_2 \leq 0 \} \]
Step 3 : Write down the constraints

function [G1,G2]=constraintes(les_u,x,tau)
global xd xi eta u_min u_max
N=length(les_u(:,1));
xu=zeros(N,4); xu(1,:)=x';
d(1)=min(norm(xu(1,1:2)-xi),norm(xu(1,1:2)-eta));
for i=2:N,
 xu(i,:)=car_d(xu(i-1,:),lesu(i-1,:),tau);
 d(i)=min(norm(xu(i,1:2)-xi),norm(xu(i,1:2)-eta));
end
cond_min=max(max(ones(N,1)*u_min'-lesu));
cond_max=max(max(lesu-ones(N,1)*u_max'));
G1=xu(N,:)-xd;
G2=[r-min(d);cond_min;cond_max];
return
Recall

$$\mathcal{P}(x(k)) : \min_u \left\{ V(x(k), u) \mid u \in \mathcal{U}(x(k)) \right\}$$

$$u^0(x(k))$$ is a solution of $$\mathcal{P}(x(k))$$
Write down the performance index

\[V(x(k), u) := \sum_{i=1}^{N} \| x^u(i; x(k)) - x^d \|^2 \]
Write down the performance index

\[V(x(k), u) := \sum_{i=1}^{N} \| x^u(i; x(k)) - x^d \|^2 \]

function f=cost(lesu,x,tau)
 global xd
 N=length(les_u(:,1));
 xu=zeros(N,4);
 xu(1,:)=x';
 f = 0;
 for i=2:N,
 xu(i,:)=car_d(xu(i-1,:),lesu(i-1,:),tau);
 f = f+norm(xu(i,:)'-xd)^2;
 end
return
FMINCON finds a constrained minimum of a function of several variables.

FMINCON attempts to solve problems of the form:

\[
\begin{align*}
\min & \quad F(X) \\
\text{subject to:} & \quad A\cdot X \leq B, \quad A_{eq}\cdot X = B_{eq} \quad \text{(linear constraints)} \\
& \quad C(X) \leq 0, \quad C_{eq}(X) = 0 \quad \text{(nonlinear constraints)} \\
& \quad LB \leq X \leq UB
\end{align*}
\]

\(X=FMINCON(FUN,X0,A,B)\) starts at \(X0\) and finds a minimum \(X\) to the function \(FUN\), subject to the linear inequalities \(A\cdot X \leq B\). \(FUN\) accepts input \(X\) and returns a scalar function value \(F\) evaluated at \(X\). \(X0\) may be a scalar, vector, or matrix.

\(X=FMINCON(FUN,X0,A,B,A_{eq},B_{eq})\) minimizes \(FUN\) subject to the linear equalities \(A_{eq}\cdot X = B_{eq}\) as well as \(A\cdot X \leq B\). (Set \(A=[]\) and \(B=[]\) if no inequalities exist.)

\(X=FMINCON(FUN,X0,A,B,A_{eq},B_{eq},LB,UB)\) defines a set of lower and upper bounds on the design variables, \(X\), so that a solution is found in the range \(LB \leq X \leq UB\). Use empty matrices for \(LB\) and \(UB\) if no bounds exist. Set \(LB(i) = -\infty\) if \(X(i)\) is unbounded below; set \(UB(i) = \infty\) if \(X(i)\) is unbounded above.

\(X=FMINCON(FUN,X0,A,B,A_{eq},B_{eq},LB,UB,NONLCON)\) subjects the minimization to the constraints defined in \(NONLCON\). The function \(NONLCON\) accepts \(X\) and returns the vectors \(C\) and \(C_{eq}\), representing the nonlinear inequalities and equalities respectively. \(FMINCON\) minimizes \(FUN\) such that \(C(X) \leq 0\) and \(C_{eq}(X) = 0\). (Set \(LB=[]\) and/or \(UB=[]\) if no bounds exist.)
Coming next . . .

- Existence of solutions
- Closed-loop stability
Existence of solutions

\[P(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

in which \(\mathbb{U} \) compact ; \(\mathbb{X} \) compact ; \(X_f = \{ x^d \} \subset \mathbb{X} \) closed.
Existence of solutions

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathcal{U}^N \mid \forall i \quad x^u(i; x) \in \mathcal{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

in which \(\mathcal{U} \) compact; \(\mathcal{X} \) compact; \(X_f = \{ x^d \} \subset \mathcal{X} \) closed.

No global definition under bounded control

one must have \(x \in X_N \) the subset of states from which \(X_f \) is accessible by \(N \)-step controls in \(\mathcal{U} \) and trajectories in \(\mathcal{X} \).
Existence of solutions

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

in which \(\mathbb{U} \) compact; \(\mathbb{X} \) compact; \(X_f = \{ x^d \} \subset \mathbb{X} \) closed.

for all \(x \in X_N \), main arguments

\(V(x, \cdot) \) is continuous and \(\mathcal{U}(x) \) is compact.
Close-loop stability

\[\mathcal{P}(x) : \min_{u} \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

\[x^d = 0 \quad ; \quad X_f = \{0\} \quad ; \quad f(0, 0) = 0 \]
Close-loop stability

\[
\mathcal{P}(x) : \min_u \left\{ V(x,u) \mid u \in \mathcal{U}(x) \right\}
\]

\[
\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\}
\]

\[
V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i))
\]

\[
x^d = 0 \quad ; \quad X_f = \{0\} \quad ; \quad f(0,0) = 0
\]

An optimal solution :

\[
u^0(x) := (u^0(0; x) \quad u^0(1; x) \quad \ldots \quad u^0(N - 1; x)) \in \mathbb{U}^N
\]
Close-loop stability

\[\mathcal{P}(x) : \min_{u} \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in X \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

\[x^d = 0 \quad ; \quad X_f = \{0\} \quad ; \quad f(0, 0) = 0 \]

An optimal solution:

\[u^0(x) := (u^0(0; x) \quad u^0(1; x) \quad \ldots \quad u^0(N - 1; x)) \in \mathbb{U}^N \]

Sampled state feedback:

\[\kappa^0(x) := u^0(0; x) \]
Study the stability of

\[x^+ = f(x, u^0(0; x)) \]
$L(x^u(\cdot; x), u(\cdot))$

$u^0(x)$ solution of $\mathcal{P}(x)$

$u^0(0; x)$

$u^0(N - 1; x)$
\[L(x^u(\cdot; x), u(\cdot)) \]

\[x^+ = f(x, u^0(0; x)) \]
Optimal solution of $P(x^+)$?
An admissible candidate sequence $\tilde{u}(\cdot, x^+) \in \mathcal{U}(x^+)$
An admissible candidate sequence $\tilde{u}(\cdot, x^+) \in \mathcal{U}(x^+)$
$L(x^u(\cdot; x), u(\cdot))$

$x^+ = f(x, u^0(0; x))$

$V^0(x^+) \leq V(x^+, \tilde{u})$ (definition of optimality)
\[L(x^u(\cdot; x), u(\cdot)) \]

\[x^+ = f(x, u^0(0; x)) \]

\[V^0(x^+) \leq V(x^+, \tilde{u}) \leq V^0(x) - L(x, u^0(0; x)) \]
Closed loop stability

Therefore, on the closed loop trajectory:

\[V^0(x(k+1)) \leq V^0(x(k)) - L(x(k), \kappa^0(x(k))) \]

therefore,

\[\lim_{k \to \infty} L(x(k), \kappa^0(x(k))) = 0 \]

Consequently, if \(L(\cdot, \cdot) \) is a continuous positive definite function in \(x \), one has

\[\lim_{k \to \infty} x(k) = 0 \]
Close-loop stability

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \ x^u(i; x) \in \mathbb{X} \text{ and } x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

\[x^d = 0 \quad ; \quad X_f = \{0\} \quad ; \quad f(0, 0) = 0 \]

The final equality constraint : A key role
Nonlinear Model Predictive Control

\[L(x^u(\cdot; x), u(\cdot)) \]

\[x^+ = f(x, u^0(0; x)) \]

Optimal solution of \(P(x^+) \)?
\[L(x^u(\cdot; x), u(\cdot)) \]

\[x^+ = f(x, u^0(0; x)) \]

An admissible candidate sequence \(\tilde{u}(\cdot, x^+) \in \mathcal{U}(x^+) \)

\[f(0, 0) = 0 \]
First useful property of $X_f = \{0\}$

For all $\xi \in X_f$, there exists an admissible control $\kappa^f(\xi)$ such that:

$$f(\xi, \kappa^f(\xi)) \in X_f$$

(X_f is positively invariant under $\kappa^f(\cdot)$)
\[L(x^{u}(\cdot; x), u(\cdot)) \]

\[x^+ = f(x, u^0(0; x)) \]

\[V^0(x^+) \leq V(x^+, \tilde{u}) \leq V^0(x) - L(x, u^0(0; x)) \]
Nonlinear Model Predictive Control

\[L(x^{u}(\cdot; x), u(\cdot)) \quad T_2 = F(f(\xi, \kappa^f(\xi))) + L(\xi, \kappa^f(\xi)) \]

\[x^+ = f(x, u^0(0; x)) \quad T_1 = F(\xi) \]

\[V^0(x^+) \leq V(x^+, \tilde{u}) = V^0(x) - L(x, u^0(0; x)) + (T_2 - T_1) \]
\[
L(x^u(\cdot; x), u(\cdot))
\]

\[
x^+ = f(x, u^0(0; x))
\]

\[
T_2 = F(f(\xi, \kappa^f(\xi))) + L(\xi, \kappa^f(\xi))
\]

\[
T_1 = F(\xi)
\]

\[
V^0(x^+) \leq V(x^+, \tilde{u}) = V^0(x) - L(x, u^0(0; x)) + \left(T_2 - T_1 \right) \leq 0
\]

\[
F(f(\xi, \kappa^f(\xi)) - F(\xi) \leq -L(\xi, \kappa^f(\xi))
\]
Second useful property of $X_f = \{0\}$

For all $\xi \in X_f$, the admissible control $\kappa^f(\xi)$ is such that:

$$F(f(\xi, \kappa^f(\xi)) - F(\xi) \leq -L(\xi, \kappa^f(\xi))$$

(The terminal cost $F(\cdot)$ is a Lyapunov function for the closed loop dynamics under $\kappa^f(\cdot)$)
First useful property of \(X_f = \{0\} \)

For all \(\xi \in X_f \), there exists an admissible control \(\kappa^f(\xi) \) such that:

\[
f(\xi, \kappa^f(\xi)) \in X_f
\]

\((X_f \text{ is positively invariant under } \kappa^f(\cdot)) \)

Second useful property of \(X_f = \{0\} \)

For all \(\xi \in X_f \), the admissible control \(\kappa^f(\xi) \) is such that:

\[
F(f(\xi, \kappa^f(\xi)) - F(\xi) \leq -L(\xi, \kappa^f(\xi))
\]

\((\text{The terminal cost } F(\cdot) \text{ is a Lyapunov function for the closed loop dynamics under } \kappa^f(\cdot)) \)
Necessary conditions for well defined and stable NMPC scheme

\[P(x) : \min_{u} \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u) \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in X \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]
Necessary conditions for well defined and stable NMPC scheme

\[\mathcal{P}(x) : \min_{u} \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u) \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

Condition 1 : Continuity

The applications \(f, F, L \) are continuous in their arguments.
Necessary conditions for well defined and stable NMPC scheme

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u) \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

Condition 2 : Compactness

✓ \(\mathbb{U} \) is compact

✓ \(\mathbb{X} \) and \(X_f \subset \mathbb{X} \) are closed.
Necessary conditions for well defined and stable NMPC scheme

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u) \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \text{ and } x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

Condition 3 : Detectability

The integral cost \(L \) must be such that

\[\left\{ L(x, u) \to 0 \right\} \Rightarrow \left\{ x \to 0 \right\} \]
Necessary conditions for well defined and stable NMPC scheme

\[
\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u)
\]

\[
\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \ x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\}
\]

\[
V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i))
\]

Condition 4 : \(X_f\) is positively invariant under some local \(\kappa^f(\cdot)\)

For all \(\xi \in X_f\), there exists an admissible control \(\kappa^f(\xi)\) such that :

\[
f(\xi, \kappa^f(\xi)) \in X_f
\]
Nonlinear Model Predictive Control

Necessary conditions for well defined and stable NMPC scheme

\[\mathcal{P}(x) : \min_u \left\{ V(x, u) \mid u \in \mathcal{U}(x) \right\} ; \quad x^+ = f(x, u)\]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \quad x^u(i; x) \in \mathbb{X} \quad \text{and} \quad x^u(N, x) \in X_f \right\}\]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i))\]

Condition 5: The terminal cost \(F(\cdot)\) is a Lyapunov under \(\kappa^f(\cdot)\)

For all \(\xi \in X_f\), the admissible control \(\kappa^f(\xi)\) is such that:

\[F(f(\xi, \kappa^f(\xi)) - F(\xi) \leq -L(\xi, \kappa^f(\xi))\]
Nonlinear Model Predictive Control

Necessary conditions for well defined and stable NMPC scheme

\[\mathcal{P}(x) : \min_{u} \mathcal{V}(x, u) \mid u \in \mathcal{U}(x) \] ; \[x^+ = f(x, u) \]

\[\mathcal{U}(x) := \left\{ u \in \mathbb{U}^N \mid \forall i \; x^u(i; x) \in \mathbb{X} \; \text{and} \; x^u(N, x) \in X_f \right\} \]

\[V(x, u) = F(x(N; x)) + \sum_{i=0}^{N} L(x^u(i; x), u(i)) \]

Condition 6 : Feasibility

There is at least a sequence that meets the constraints (in particular \(x(0) \in X_N \) (the subset of state steerable in \(N \) steps to \(X_f \) with bounded controls in \(\mathbb{U} \)).
To summarize

The system \(x^+ = f(x, u) \)

The cost function \(F(x(N)) + \sum_{i=0}^{N} L(x(i), u(i)) \)

1) \(f, L, L \) are continuous.
2) \(\mathbb{U} \) is compact, \(\mathbb{X} \) and \(X_f \subset \mathbb{X} \) are closed.
3) \(\{L(x, u) \to 0\} \Rightarrow \{x \to 0\} \)
4) \(X_f \) is positively invariant (with some \(\kappa_f(\cdot) \).
5) \(F(\cdot) \) is a Lyapunov function under \(\kappa_f(\cdot) \).
6) \(x(0) \in X_N \).
How to choose X_f and $\kappa_f(\cdot)$?

- **Infinite horizon** $N = \infty$.
How to choose X_f and $\kappa_f(\cdot)$?

1. Infinite horizon $N = \infty$.
2. Point-wise final constraint $X_f = \{0\}$.

If the linearized system at 0 is stabilizable, then

$$\kappa_f(x) = -Kx(A - BK)^T P (A - BK) - P = -Q$$

for some $P, Q > 0$. X_f is a level set of $x^T Px$, namely

$$X_f = \{x | x^T Px \leq \varrho\}$$

for a sufficiently small $\varrho > 0$.
How to choose X_f and $\kappa_f(\cdot)$?

1. Infinite horizon $N = \infty$.
2. Point-wise final constraint $X_f = \{0\}$.
3. If the linearized system at 0 is stabilizable, then
How to choose X_f and $\kappa_f(\cdot)$?

1. Infinite horizon $N = \infty$.
2. Point-wise final constraint $X_f = \{0\}$.
3. If the linearized system at 0 is stabilizable, then
 - $\kappa_f(x) = -Kx$
How to choose X_f and $\kappa_f(\cdot)$?

1. Infinite horizon $N = \infty$.
2. Point-wise final constraint $X_f = \{0\}$.
3. If the linearized system at 0 is stabilizable, then
 - $\kappa_f(x) = -Kx$
 - $(A - BK)^T P (A - BK) - P = -Q$ for some $P, Q > 0$
How to choose X_f and $\kappa_f(\cdot)$?

1. Infinite horizon $N = \infty$.
2. Point-wise final constraint $X_f = \{0\}$.
3. If the linearized system at 0 is stabilizable, then
 - $\kappa_f(x) = -Kx$
 - $(A - BK)^TP(A - BK) - P = -Q$ for some $P, Q > 0$
 - X_f is a level set of x^TPx, namely
 $$X_f = \left\{ x \mid x^TPx \leq \varrho \right\}$$
 for a sufficiently small $\varrho > 0$.
Example

\[x_1^+ = x_1 + (1 + x_2^2)u \]
\[x_2^+ = \frac{3}{2}x_2 - x_1e^u \]

- Open-loop instable.
- The set of equilibrium states is given by

\[\mathcal{E}_{st} = \left\{ x^{(\alpha)} := \begin{pmatrix} \alpha \\ 2\alpha \end{pmatrix} ; \quad \alpha \in \mathbb{R} \right\} \]

Control objective starting at \(x^{(0)} = (0, 0) \), stabilize the system around \(x^{(1)} = (1, 2) \).
Consider the cost function

\[V(x, u) := F(x(N)) + \sum_{i=0}^{N} L(x(i), u(i)) \]

where

\[L(x, u) := \| x - x^{(1)} \|^2 + ru^2 \]

\[F(x) = \sum_{i=1}^{M-N} x^0(i; x) \]
Test 1: $N = 2, M = 2, r = 1$
Test 1: $N = 2, M = 2, r = 1$
Let us assume that one looks for solution such that \(u \leq 0.1 \).

Assume that for that reason one takes

\[r = 160 \]
Test 2: $N = 2, M = 2, r = 160$
Test 2 : $N = 2, \ M = 2, \ r = 160$
Let us take $M = 3$ (instead of 2)
Test 3: $N = 2, M = 3, r = 160$
Test 3: $N = 2$, $M = 3$, $r = 160$
Increasing M enabled the target state to be reached.

However, the control is again above 0.1,

So let us increase r again by taking

$$r = 500$$
Test 4: \(N = 2, \ M = 3, \ r = 500 \)
Test 4: $N = 2, M = 3, r = 500$
A limit cycle appears

and the control is beyond 0.25!!!
Let us explicitly impose the constraint

\[\mathbb{U} = [-0.1, 0.1] \]

and test it with the configuration

\[r = 1 \quad ; \quad N = M = 3 \]
Test 5: $N = 3, M = 3, r = 1$, explicit constraint $|u| \leq 0.1$
Test 5: $N = 3$, $M = 3$, $r = 1$, explicit constraint $|u| \leq 0.1$
The example shows that

- Nonlinear Model Predictive Control is a "generic" solution.

(Who remember the system’s equations?!?)
subroutine syst(x,u,xplus)
 implicit none
 double precision :: x(2), u, xplus(2)
 xplus(1)=x(1)+(1.0d0+x(2)**2)*u
 xplus(2)=1.5*x(2)-x(1)*dexp(u)
end subroutine syst
subroutine syst_long(x0, nu, ns, utilde, xtilde)
 implicit none
 external syst
 integer :: nu, ns, i
 double precision :: x0(2), utilde(nu), xtilde(ns+1,2)
 xtilde(1,:) = x0
 do i = 1, nu
 call syst(xtilde(i,:), utilde(i), xtilde(i+1,:))
 enddo
 do i = nu+1, ns
 call syst(xtilde(i,:), 0.0d0, xtilde(i+1,:))
 enddo
end subroutine syst_long
subroutine criterie(nu,utilde,J)
 use param
 use imsl
 implicit none
 integer :: nu, i
 double precision :: utilde(nu), J, xtilde(M+1,2)
 double precision :: dx(2)
 call syst_long(x0_glob,nu,M,utilde,xtilde)
 J=0.d0
 do i=1,nu
 J=J+qu*dabs(utilde(i))*2
 dx = xtilde(i+1,:) - xd_glob
 J = J + qx*dot_product(dx, eye(2).x.dx)
 enddo
 do i=nu+1,M
 dx = xtilde(i+1,:) - xd_glob
 J = J + qx*dot_product(dx, eye(2).x.dx)
 enddo
end subroutine criterie
Computation of the optimal sequence

```fortran
subroutine uhat(x0, xd, nu, utilde, J)
    use param
    implicit none
    external criterere
    integer :: nu, maxfcn=100
    double precision :: x0(2), xd(2), utilde(nu), J
    double precision :: utilde_guess(nu), ulb(nu), uub(nu)
    x0_glob=x0; xd_glob=xd; utilde_guess=0.0d0
    ulb=-umax; uub=umax
    call dbcpol(criterere,nu,utilde_guess,0,ulb,uub,1.0d-8,maxfcn,utilde,J)
end subroutine uhat
```
The example shows that

- Nonlinear Model Predictive Control is a "generic" solution.
The example shows that

- Nonlinear Model Predictive Control is a "generic" solution.
- Easy handling of constraints
The example shows that

- Nonlinear Model Predictive Control is a "generic" solution.
- Easy handling of constraints
- The stability IS AN ISSUE
To summarize

The system $x^+ = f(x, u)$

The cost function $F(x(N)) + \sum_{i=0}^{N} L(x(i), u(i))$

1) f, L, L are continuous.
2) \mathcal{U} is compact, \mathbb{X} and $X_f \subset \mathbb{X}$ are closed.
3) $\{L(x, u) \to 0\} \Rightarrow \{x \to 0\}$
4) X_f is positively invariant (with some $\kappa_f(\cdot)$).
5) $F(\cdot)$ is a Lyapunov function under $\kappa_f(\cdot)$.
6) $x(0) \in X_N$.
This general result summarizes 90% of existing works on the stability of the NMPC schemes.

This does not include the contractive schemes ...
A PRELIMINARY EXAMPLE

Consider the nonlinear system

\[
\dot{x}_1 = x_2 ; \quad \dot{x}_2 = x_1 u
\]

and the "candidate" Lyapunov function

\[
V(x) = \frac{1}{2} \left[x_1^2 + x_2^2 \right]
\]

Compute the derivative of \(V \)

\[
\dot{V}(x) = x_1 x_2 (1 + u)
\]
A PRELIMINARY EXAMPLE

Consider the nonlinear system

\[\dot{x}_1 = x_2 \quad ; \quad \dot{x}_2 = x_1 u \]

and the "candidate" Lyapunov function

\[V(x) = \frac{1}{2} \left[x_1^2 + x_2^2 \right] \]

Compute the derivative of \(V \)

\[\dot{V}(x) = x_1 x_2 (1 + u) \]

For classical Lyapunov design

\(V \) is not a good choice
(singular surface \(x_1 x_2 = 0 \))
A PRELIMINARY EXAMPLE

Consider the nonlinear system

\[\dot{x}_1 = x_2 \quad ; \quad \dot{x}_2 = x_1 u \]

and the "candidate" Lyapunov function

\[V(x) = \frac{1}{2} \left[x_1^2 + x_2^2 \right] \]

Compute the derivative of \(V \)

\[\dot{V}(x) = x_1 x_2 (1 + u) \]

For classical Lyapunov design

\(V \) is not a good choice

(singular surface \(x_1 x_2 = 0 \))

But...

For classical Lyapunov design

\(V \) is not a good choice

(singular surface \(x_1 x_2 = 0 \))

But...
Nonlinear Model Predictive Control

The basic idea: The contraction property

\[
\min_{u(\cdot) \equiv u_{0} \in [-u_{\text{max}}, +u_{\text{max}}]} \| x_u(T, x_0(\theta)) \|
\]

\[\theta \in [0, \pi]\]

To summarize: A long term contraction property

\[\text{Whatever is the initial state } x_{0} \in B(0, 1), \text{ there exists constant control } u \in [-5, +5] \text{ such that } V(x_u(2, x_0)) \leq 0, V(x_0) \geq 0 \text{ or } V(x_u(4, x_0)) \leq 0.\]
Nonlinear Model Predictive Control

The basic idea: The contraction property

\[\min_{u(\cdot) \equiv u_0 \in [-u_{max}, +u_{max}]} \| x_u(T, x_0(\theta)) \| \]

To summarize: A long term contraction property

Whatever is the initial state \(x_0 \in B(0, 1) \), there exists a constant control \(u_0 \in [-5, +5] \) such that

\[V(x_u(2, x_0)) \leq 0 \]

or

\[V(x_u(4, x_0)) \leq 0 \]
To summarize: A long term contraction property

Whatever is the initial state \(x_0 \in B(0, 1) \), there exists constant control \(u \in [-5, +5] \) such that

\[
V(x^u(2, x_0)) \leq 0.9 \, V(x_0) \quad \text{or} \quad [V(x^u(4, x_0)) \leq 0.82 \, V(x_0)]
\]
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

\[
\min_{u(\cdot), \Delta \in [0, T]} \int_0^{\Delta} L\left(x_u(\tau, x(t))\right) d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))
\]
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

\[
\min_{u(\cdot), \Delta \in [0,T]} \int_0^\Delta L(x_u(\tau, x(t))) \, d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))
\]
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

\[
\min_{u(\cdot), \Delta \in [0, T]} \int_0^\Delta L\left(x_u(\tau, x(t))\right) d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))
\]
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

\[
\min_{\mathbf{u}(\cdot), \Delta \in [0, T]} \int_0^\Delta L\left(x_u(\tau, x(t))\right) d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))
\]
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

$$\min_{u(\cdot), \Delta \in [0, T]} \int_0^\Delta L(x_u(\tau, x(t))) d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))$$
A bad formulation

Define a receding horizon feedback based on the following open-loop optimization problem

\[
\min_{u(\cdot), \Delta \in [0, T]} \int_0^\Delta L(x_u(\tau, x(t))) \, d\tau \quad \text{under} \quad V(x_u(t + \Delta, x(t))) \leq \gamma V(x(t))
\]

Updating systematically the contractive constraint

\[V(x_u(\Delta, x(t))) \leq \gamma V(x(t))\]

May cause instability in closed-loop
Nonlinear Model Predictive Control

Using the contraction property in feedback design

Classical contractive Receding horizon schemes

Either

Use the open-loop control

\[\hat{u}(\cdot, x(t)) \]

on \([t, t + \hat{\Delta}(x(t))]\)
Or

Memorize $x(t)$ and use

$$V(x_u(\Delta, x(t + k\tau_s))) \leq \gamma V(x(t))$$

in a RH scheme during the time interval $[t, t + \hat{\Delta}(x(t))]$
Nonlinear Model Predictive Control

Using the contraction property in feedback design

Classical contractive Receding horizon schemes

Or

Memorize $x(t)$ and use

$$V(x_u(\Delta, x(t + k\tau_s))) \leq \gamma V(x(t))$$

in a RH scheme during the time interval $[t, t + \hat{\Delta}(x(t))]$

- Non standard RH implementation
- Lack of reactivity
- Potential feasibility problems
 - In presence of disturbances
 - Under truncated optimization
Consider nonlinear systems

\[\dot{x} = f(x, u) \ ; \ x \in \mathbb{R}^n \ ; \ u \in \mathbb{R}^m \ ; \ f \text{ continuous} \]

satisfying the following assumption

Infinitely fast state excursions need infinite control
Consider nonlinear systems

\[\dot{x} = f(x, u) \quad ; \quad x \in \mathbb{R}^n \quad ; \quad u \in \mathbb{R}^m \quad ; \quad f \text{ continuous} \]

satisfying the following assumption

Infinitely fast state excursions need infinite control

For all finite horizon \(T > 0 \),

\[\lim_{\|x_0\| \to \infty} \left[\min_{u \in W[0,T]} \min_{t \in [0,T]} \|F(t, x_0, u)\| \right] = \infty \]

for all compact subset \(W \subset \mathbb{R}^m \).
✓ Choose a sampling period τ_s

✓ Define a τ_s-piece-wise constant control profile

$$U_{pwc}(\cdot, p) ; \quad p \in \mathbb{P}$$

✓ The parametrization is called "translatable" if for all $p \in \mathbb{P}$, there is $p^+ \in \mathbb{P}$ s.t.

$$u^i(p^+) = u^{i+1}(p)$$

$\forall i \in \{1, \ldots, N - 1\}$
✓ Choose a sampling period τ_s

✓ Define a τ_s-piece-wise constant control profile

$$\mathcal{U}_{pwc}(\cdot, p) \quad ; \quad p \in \mathbb{P}$$

✓ The parametrization is called "translatable" if for all $p \in \mathbb{P}$, there is $p^+ \in \mathbb{P}$ s.t.

$$u^i(p^+) = u^{i+1}(p)$$

$$\forall i \in \{1, \ldots, N - 1\}$$
Choose a sampling period τ_s

Define a τ_s-piece-wise constant control profile

$$\mathcal{U}_{pwc}(\cdot, p) ; \quad p \in \mathbb{P}$$

The parametrization is called "translatable" if for all $p \in \mathbb{P}$, there is $p^+ \in \mathbb{P}$ s.t.

$$u^i(p^+) = u^{i+1}(p)$$

$\forall i \in \{1, \ldots, N - 1\}$

Notation $F(\cdot, x, p), V(\cdot, x, p)$

$$p^+ = \begin{pmatrix} e^{-\tau_s} & 0 \\ 0 & e^{-2\tau_s} \end{pmatrix} p$$
The strong contraction property

\[\exists \gamma \in]0, 1[\text{ s.t. for all } x, \text{ there exists } p^c(x) \in \mathcal{P} \text{ such that} \]

\[\min_{q \in \{1, \ldots, N\}} V(q_{\tau_s}, x, p^c(x)) \leq \gamma V(x) \]
The strong contraction property

1. \(\exists \gamma \in]0, 1[\text{ s.t. for all } x, \text{ there exists } p^c(x) \in \mathbb{P} \text{ such that} \)

\[
\min_{q \in \{1, \ldots, N\}} V(q \tau_s, x, p^c(x)) \leq \gamma V(x)
\]

2. \(p_c(\cdot) \) is bounded over bounded sets
The strong contraction property

1. \(\exists \gamma \in]0, 1[\) s.t. for all \(x \), there exists \(p^c(x) \in P \) such that

\[
\min_{q \in \{1, \ldots, N\}} V(q_{\tau_s}, x, p^c(x)) \leq \gamma V(x)
\]

2. \(p_c(\cdot) \) is bounded over bounded sets

3. \(\exists \) a continuous function \(\varphi : \mathbb{R}^n \to \mathbb{R}_+ \) s.t. for all \(x \) :

\[
\|V_{1 \to N}(\cdot, x, p^c(x))\|_\infty \leq \varphi(x) \cdot V(x)
\]

where

\[
\|V_{1 \to q}(\cdot, x, p)\|_\infty = \max_{i \in \{1, \ldots, q\}} V(i_{\tau_s}, x, p)
\]
Nonlinear Model Predictive Control
A new contractive scheme
The new contractive RH formulation
The receding-horizon state feedback

\[u(k\tau_s + \tau) = u_1(\hat{p}(x(k\tau_s))) \quad \forall \tau \in [0, \tau_s] \]

The open-loop optimal control problem

\[
\min_{(q, p) \in \{1, \ldots, N\} \times \mathbb{P}} X_V(q_{\tau_s}, x, p) + \alpha q_N \cdot \min \left\{ \varepsilon^2, \| V_{1\rightarrow q}(\cdot, x, p) \|_{\infty} \right\}
\]

The new contractive RH formulation

\[
V(x(t)) \quad \gamma V(x(t))
\]

\[t \quad t + T \]
The open-loop optimal control problem

\[
\min_{(q,p) \in \{1, \ldots, N\} \times P} X V(q_{\tau s}, x, p) + \alpha q_N \cdot \min_{\{\varepsilon^2, \|V_{1 \rightarrow q}(\cdot, x, p)\|_{\infty}\}}
\]

The receding-horizon state feedback

\[
u(k_{\tau s} + \tau) = u_1(\hat{p}(x(k_{\tau s}))) \quad \forall \tau \in [0, \tau_s[\]

The open-loop optimal control problem

\[
\min_{(q,p) \in \{1,\ldots,N\} \times P_X^V(q_{\tau s}, x, p)} + \alpha_{q_{N}} \cdot \min_{\varepsilon_2, \|V_{1 \to q}(\cdot, x, p)\|_{\infty}}
\]

The receding-horizon state feedback

\[
u_k(t_{\tau s} + \tau) = u_1(\hat{p}(x_k)) \quad \forall \tau \in [0, \tau_s]
\]
The open-loop optimal control problem

\[
\min_{(q,p) \in \{1, \ldots, N\} \times \mathcal{P}} X(q_{\tau_s}, x, p) + \alpha q_N \cdot \min_{\epsilon^2, \|V_{1 \rightarrow q}(\cdot, x, p)\|_{\infty}}
\]

The receding-horizon state feedback

\[
u(k\tau_s + \tau) = u_1(\hat{p}(x(k\tau_s))) \quad \forall \tau \in [0, \tau_s]\]

![Diagram showing the relationship between V(x(t+)) and γV(x(t+))](image-url)
The open-loop optimal control problem

\[
\min_{(q,p) \in \{1, \ldots, N\} \times \mathbb{P}_X} \quad V(q\tau_s, x, p) + \alpha \frac{q}{N} \cdot \min \left\{ \varepsilon^2, \|V_1 \rightarrow_q (\cdot, x, p)\|_{\infty} \right\}
\]
The open-loop optimal control problem

\[
\min_{(q,p) \in \{1,\ldots,N\} \times \mathbb{P}_X} \quad V(q\tau_s, x, p) + \alpha \frac{q}{N} \cdot \min \left\{ \varepsilon^2, \| V_{1\rightarrow q}(\cdot, x, p) \|_\infty \right\}
\]

The receding-horizon state feedback

\[
u(k\tau_s + \tau) = u^1(\hat{p}(x(k\tau_s))) \quad \forall \tau \in [0, \tau_s[\]

A new contractive scheme

The new contractive RH formulation

\[
\min_{(q,p)\in\{1,\ldots,N\}\times\mathbb{P}_X} V(q\tau_r, x, p) + \alpha \frac{q}{N} \cdot \min\{\varepsilon^2, \|V_{1\rightarrow q}(\cdot, x, p)\|_\infty\}
\]

\[
\|V_{1\rightarrow q}(\cdot, x, p)\|_\infty
\]

\[
V(\cdot, x, p)
\]
The new contractive RH formulation

\[
\min_{(q,p) \in \{1, \ldots, N\} \times \mathbb{P}_X} \min \left\{ \frac{\alpha q}{N} \cdot \min \left\{ \varepsilon^2, \| V_{1-q}(\cdot, x, p) \|_\infty \right\}, \| V_{1-q}(\cdot, x, p) \|_\infty \right\}
\]

\(V(x(t_k)) \)

\(V(q \tau_s, x, p) \)

\((\hat{q}(t_k), \hat{p}(t_k)) \) optimal solution

\(N \) Time
The new contractive RH formulation

\[
\min_{(q,p) \in \{1, \ldots, N\} \times \mathbb{P}_X} V(q \tau_s, x, p) + \alpha \frac{q}{N} \cdot \min \{ \varepsilon^2, \| V_{1 \rightarrow q} (\cdot, x, p) \|_\infty \}
\]

\[V(x(t_{k+1}))\]

\[V(x(t_k))\]

\[V(q \tau_s, x, p)\]

\[t_k \quad t_{k+1} \]

\[\hat{q}(t_k)\]

\[N \quad \text{Time}\]
The new contractive RH formulation

\[V(q\tau_s, x, p) + \alpha \frac{q}{N} \cdot \min\{\varepsilon^2, \|V_{1\rightarrow q}(\cdot, x, p)\|_{\infty}\} \]

\[\|V_{1\rightarrow q}(\cdot, x, p)\|_{\infty} \]

if \(\hat{q}(t_k) \geq 1 \) then

\[\hat{q}(t_{k+1}) = \hat{q}(t_k) - 1 \]

\[\tilde{p}(t_{k+1}) = \tilde{p}^+(t_k) \]
The new contractive RH formulation

\[V(q \tau_s, x, p) + \alpha \frac{q}{N} \cdot \min \{ \varepsilon^2, \| V_{1 \rightarrow q}(\cdot, x, p) \|_\infty \} \]

\[\| V_{1 \rightarrow q}(\cdot, x, p) \|_\infty \]

If \(\hat{q}(t_k) \geq 1 \) then

\[\tilde{q}(t_{k+1}) = \hat{q}(t_k) - 1 \]

\[\tilde{p}(t_{k+1}) = \hat{p}^+(t_k) \]

\[V(x(t_{k+1})) \leq V(x(t_k)) - \frac{\alpha}{N} \cdot \min \{ \varepsilon^2, \| V_{1 \rightarrow \hat{q}(t_k)}(\cdot, x(t_k), \tilde{p}(t_k)) \|_\infty \} \]
Basic Result

If the following conditions hold

1. Continuity (system/parametrization)
2. Infinitely fast excursions need infinite controls
3. The control parametrization is translatable on

\[P_X := P \cap B\left(0, \sup_{x \in \bar{B}(0, \rho(X))} \| p^c(x) \| + \varepsilon_0 \right) \subseteq P \subseteq \mathbb{R}^{np} \]

Then, \(\exists \) sufficiently small \(\varepsilon > 0 \) and \(\alpha > 0 \) such that the RH feedback is well defined and makes the origin \(x = 0 \) asymptotically stable for the resulting CL dynamics with a region of attraction that contains \(X \).
The system equations

\[
\begin{pmatrix}
 mL^2 + I & mL \cos \theta \\
 mL \cos \theta & m + M
\end{pmatrix}
\begin{pmatrix}
 \ddot{\theta} \\
 \ddot{r}
\end{pmatrix}
= \begin{pmatrix}
 mLg \sin \theta - k_\theta \dot{\theta} \\
 F + mL\dot{\theta}^2 \sin \theta - k_x \dot{r}
\end{pmatrix}
\]

A pre-compensator

\[
F = -K_{pre} \begin{pmatrix} r \\ \dot{r} \end{pmatrix} + u
\]
The simple inverted pendulum: A self contained RH control

The system equations

\[
\begin{align*}
\dot{x}_1 &= x_3 ; \quad \dot{x}_2 = x_4 \\
\begin{pmatrix}
\dot{x}_3 \\
\dot{x}_4
\end{pmatrix} &= [M(x)]^{-1} \begin{pmatrix}
mLg \sin(x_1) - k_{\theta} \cdot x_3 \\
-K_{pre_1} x_2 - K_{pre_2} x_4 + mL x_3^2 \sin(x_1) - k_x x_4 + u
\end{pmatrix}
\end{align*}
\]
Control parametrization

\[u^i(p) = p \cdot e^{-t_i/t_r} \; ; \; \; t_i = \frac{(i - 1)\tau_s}{N} \]

where \(p \in \mathbb{P}(x) := [p_{min}(x), p_{max}(x)] \) s.t

\[
\begin{align*}
p_{min}(x) &= -F_{max} + K_{pre_1}x_2 + K_{pre_2}x_4 \\
p_{max}(x) &= +F_{max} + K_{pre_1}x_2 + K_{pre_2}x_4
\end{align*}
\]
Use the contractive RH formulation given by:

\[
V(x) = \frac{1}{2} \left[\dot{\theta}^2 + \beta r^2 + \dot{r}^2 \right] + \left[1 - \cos(\theta)\right]^2
\]

\[
\min_{(q,p)\in\{1,\ldots,N\} \times \mathbb{P}(x)} \left\{ V(q\tau_s, x, p) + \frac{\alpha}{N} \cdot \min\{\varepsilon, \|V_{1\rightarrow q}(\cdot, x, p)\|_\infty\} \right\}
\]

\[
u(k\tau_s + \tau) = u^1(\hat{p}(x(k\tau_s))) \quad \forall \tau \in [0, \tau_s[\]
The parameters of the controller

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_s</td>
<td>0.4 s</td>
<td>sampling period</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
<td>horizon length</td>
</tr>
<tr>
<td>t_r</td>
<td>0.2</td>
<td>Constant for the control param.</td>
</tr>
<tr>
<td>$\alpha = \varepsilon$</td>
<td>0.01</td>
<td>cost function parameters</td>
</tr>
<tr>
<td>K_{pre}</td>
<td>(2.5, 10.0)</td>
<td>Pre-compensation gain</td>
</tr>
<tr>
<td>F_{max}</td>
<td>$\in {1.0, 2.0}$</td>
<td>saturation level on F</td>
</tr>
<tr>
<td>β</td>
<td>$\in 10$</td>
<td>weighting coefficient on r</td>
</tr>
</tbody>
</table>

Runs on a 1.3 GHz Pentium-III
Nonlinear Model Predictive Control

Illustrative examples

The simple inverted pendulum: A self contained RH control

\[\theta \ (\text{deg}) \]

\[r \ (\text{m}) \]

\[F(\text{N}) \]

Computation time (\text{ms})

Time (s)

Sampling periods
The double inverted pendulum: a hybrid control scheme

\[L_1 = 2l_1 \]
\[J_1 = \frac{1}{2} m_1 l_1^2 \]
\[J_2 = \frac{1}{2} m_2 l_2^2 \]
\[h_1 = m + m_1 + m_2 \]
\[h_2 = m_1 l_1 + m_2 l_2 \]
\[h_3 = m_2 l_2 \]
\[h_4 = m_1 l_1^2 + m_2 L_1^2 + J_1 \]
\[h_5 = m_2 l_2 L_1 \]
\[h_6 = m_2 l_2^2 + J_2 \]
\[h_7 = (m_1 l_1 + m_2 L_1)g \]
\[h_8 = m_2 l_2 g \]
The double inverted pendulum: a hybrid control scheme

System equations

\[h_1 \ddot{r} + h_2 \ddot{\theta}_1 \cos \theta_1 + h_3 \ddot{\theta}_2 \cos \theta_2 = h_2 \dot{\theta}_1^2 \sin \theta_1 + h_3 \dot{\theta}_2^2 \sin \theta_2 + F \]

\[h_2 \ddot{r} \cos \theta_1 + h_4 \ddot{\theta}_1 + h_5 \ddot{\theta}_2 \cos(\theta_1 - \theta_2) = h_7 \sin \theta_1 - h_5 \dot{\theta}_2^2 \sin(\theta_1 - \theta_2) \]

\[h_3 \ddot{r} \cos \theta_2 + h_5 \ddot{\theta}_1 \cos(\theta_1 - \theta_2) + h_6 \ddot{\theta}_2 = h_5 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + h_8 \sin \theta_2 \]

\[
L_1 = 2l_1 \\
J_1 = \frac{1}{2} m_1 l_1^2 \\
J_2 = \frac{1}{2} m_2 l_2^2 \\
h_1 = m + m_1 + m_2 \\
h_2 = m_1 l_1 + m_2 l_2 \\
h_3 = m_2 l_2 \\
h_4 = m_1 l_1^2 + m_2 L_1^2 + J_1 \\
h_5 = m_2 L_1 \\
h_6 = m_2 l_2^2 + J_2 \\
h_7 = (m_1 l_1 + m_2 L_1)g \\
h_8 = m_2 l_2 g
\]
Pre-compensation

\[F = -K_{pre} \cdot \left(\begin{pmatrix} \dot{r} \\ \dot{\theta} \end{pmatrix} \right) + u \]
Control parametrization

\[u^i(p) = p_1 \cdot e^{\lambda_1 t_i} + p_2 e^{-\lambda_2 t_i} \quad ; \quad t_i = \frac{(i - 1) \tau_s}{N} \]

\[p_{\min}(x) := \frac{1}{2} \left[-F_{\max} + K_{pre} \left(\frac{r}{\dot{r}} \right) \right] \quad ; \quad p_{\max}(x) := \frac{1}{2} \left[+F_{\max} + K_{pre} \left(\frac{r}{\dot{r}} \right) \right] \]
The contractive RH controller

\[V(x) = \frac{h_4}{2} \dot{\theta}_1^2 + \frac{h_6}{2} \dot{\theta}_2^2 + h_5 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2) + h_7 \left[1 - \cos(\theta_1) \right] + \]
\[+ h_8 \left[1 - \cos(\theta_2) \right] + h_1 \left[r^2 + \dot{r}^2 \right] \]

\[u(k\tau_s + t) = K_{RH}(x(k\tau_s)) := u^1(\hat{p}(x(k\tau_s))) ; \quad t \in [0, \tau_s] \]
The contractive RH controller

\[
V(x) = \frac{h_4}{2} \dot{\theta}_1^2 + \frac{h_6}{2} \dot{\theta}_2^2 + h_5 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2) + h_7 \left[1 - \cos(\theta_1) \right] + \\
+ h_8 \left[1 - \cos(\theta_2) \right] + h_1 \left[r^2 + \dot{r}^2 \right]
\]

\[
u(k\tau_s + t) = K_{RH}(x(k\tau_s)) := u^1(\hat{p}(x(k\tau_s))) ; \quad t \in [0, \tau_s[\]

A local LQR controller

\[
K_L(x) = -L \cdot \begin{pmatrix}
x_1^m \\
x_2^m \\
x_3 \\
\vdots \\
x_6
\end{pmatrix}
\]

solving the discrete time Riccati equation

\[
A_d^T S A_d - S - (A_d^T S B_d)(R + B_d^T S B_d)(B_d^T S A_d) + Q = 0
\]
To summarize, the hybrid controller is given by:

\[
 u(kT_s + \tau) = \begin{cases}
 K_{RH}(x(kT_s)) & \text{if } \|x(kT_s)\|_S^2 > \eta \\
 K_L(x(kT_s)) & \text{otherwise}
 \end{cases}
\]
To summarize, the hybrid controller is given by

\[u(k\tau_s + \tau) = \begin{cases}
K_{RH}(x(k\tau_s)) & \text{if } \|x(k\tau_s)\|_S^2 > \eta \\
K_L(x(k\tau_s)) & \text{otherwise}
\end{cases} \]

The parameters of the controller

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_s)</td>
<td>0.3 s</td>
<td>sampling period</td>
</tr>
<tr>
<td>(N)</td>
<td>10</td>
<td>horizon length</td>
</tr>
<tr>
<td>(L)</td>
<td>(360, 29)</td>
<td>(linear controller gain)</td>
</tr>
<tr>
<td>((\lambda_1, \lambda_2))</td>
<td>(100, 20)</td>
<td>Control parametrization</td>
</tr>
<tr>
<td>(\eta)</td>
<td>1.0</td>
<td>switching threshold</td>
</tr>
<tr>
<td>(i_{max})</td>
<td>20</td>
<td>Max number of function evaluation</td>
</tr>
</tbody>
</table>
Nonlinear Model Predictive Control
Illustrative examples
The double inverted pendulum: a hybrid control scheme

\(\theta_1(\text{deg}) \)
\(\theta_2(\text{deg}) \)
\(r(\text{m}) \)

Time (s)
F(N)
Optimal cost \(\hat{J}(x) \)
comp. times (ms)

Sampling period

\(\theta_1(\text{deg}) \)
\(\theta_2(\text{deg}) \)
\(r(\text{m}) \)

Time (s)

M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 71 / 76
Double inverted pendulum

le film
The twin pendulum
The twin pendulum

- \(\theta_1/(2\pi) \) et \(\theta_2/(2\pi) \)
- Position chariot \(r \) (m)
- La fonction E
- Accélération du chariot \(d^2r/dt^2 \) (m/s²)
Nonlinear constrained NMPC for maximizing the production in polymerization processes.
Further readings

N. Marchand and M. Alamir

Numerical stabilization of a rigid spacecraft with two actuators

Journal of dynamic systems, measurements and control.
Further readings

M. Alamir and F. Boyer

Fast generation of attractive trajectories for an under-actuated satellite: Application to feedback control design

Further readings

M. Alamir

Nonlinear Receding Horizon sub-optimal guidance law for minimum interception time problem

Further readings

M. Alamir and N. Marchand

Constrained Minimum Time Oriented Feedback Control For the Stabilization of Nonholonomic Systems in Chained Form

Further readings

A. Hably, N. Marchand and M. Alamir

Constrained Minimum-Time Oriented Stabilization of Extended Chained Form Systems

CDC-ECC. Spain, (2005).
Further readings

M. alamir and H. Khennouf

Discontinuous Receding Horizon Control Based Stabilizing Feedback for Nonholonomic Systems in Power Form

CDC. New Orleans, (1995).
Further readings

A. Chemori and M. Alamir

Limit Cycle Generation for a Class of Nonlinear Systems with jumps using a Low Dimensional Predictive Control

Further readings

A. Chemori and M. Alamir

Multi-step Limit Cycle Generation for Rabbit’s Walking Based on a Nonlinear Low dimensional Predictive Control Scheme

International Journal of Mechatronics. To Appear (2005-6)
Further readings

M. Alamir, F. Ibrahim and J. P. Corriou

A Flexible Nonlinear Model Predictive Control Scheme for Quality/Performance Handling in Nonlinear SMB Chromatography

Further readings

S. A. Attia, M. Alamir and C. Canudas de Wit

A Voltage Collapse Avoidance in Power Systems *: A Receding Horizon Approach*

Further readings

M. Alamir and G. Bornard

On the stability of receding horizon control of nonlinear discrete-time systems

Further readings

M. Alamir and N. Marchand

Numerical Stabilization of Nonlinear Systems: Exact Theory and Approximate Numerical Implementation

Further readings

M. Alamir and G. Bornard

Stability of truncated Infinite Constrained Receding Horizon Scheme: The General Nonlinear Case

Further readings

M. Alamir and I. Balloul

Robust Constrained Control Algorithm for General Batch Processes

Further readings

M. Alamir

A new Path Generation Based Receding Horizon Formulation for Constrained Stabilization of Nonlinear Systems

Further readings

M. Alamir

A Low Dimensional Contractive NMPC Scheme for Nonlinear Systems Stabilization: Theoretical Framework and Numerical Investigation on Relatively Fast Systems.

Workshop on Assessment and Future Directions of NMPC, Freudenstadt, Germany (2005).
Download this presentation at

http://www.lag.ensieg.inpg.fr/alamir/downloads.htm